
State of Scala

Venkat Subramaniam
venkats@agiledeveloper.com @venkat_s

Evolutions of Scala

Scala has evolved over the years

Scala 2.8 has some interesting additions and changes

★ Collections

★Named and Default Arguments

★package objects

★Chained package clauses

★tailrec annotation

★Type Specialization
2

Collections

3

Source: http://www.scala-lang.org

Mutable and
Immutable
flavors
provided

Traversable Trait

Top of the Collections hierarchy

Provides quite a few common methods that are available
on all collections

Methods to add elements, split and partition the
collection

4

Immutable Collections

List—constant time op on head of the list

Stream—like list but lazy evaluation, so infinite length

Vector—improves on List for constant time op on any
element—implemented using Tries

Stack, Queue, Range, Hash Tries, Red-black tree, BitSet,
ListMap,

5

Mutable Collections
ArrayBuffer

ListBuffer

StringBuffer

LinkedList

Double Linked List

Mutable List

Queue

Array Sequence, Stack, ArrayStack, HashTable, Weak
HashMap, Concurrent Map, Mutable BitSet 6

Stream

7

#:: and take

Views

Collections come in two flavors

Strict collections—elements are evaluated when you
create

Lazy collections—elements are evaluated on demand

Most collections are strict, Stream is lazy

You can, however, use views to convert a strict
collection into a lazy one

8

Views

Views provide good modularity

It separates the operations on the collection and can
even chain them while providing lazyness

9

Views

10

Named and Default Args
You can provide default values for arguments

You can refer to parameters using names

11

Named Arguments

The name you specify may be a named parameter or a
variable in scope—it can’t be both

If you place in parenthesis, it is not considered a named
argument

Expressions are evaluated in the order you place them

Overriding methods can use different parameter names

Name is based on type checking

12

package objects...
In the past, package can have traits, classes, objects

You can now put methods, etc. in package scope and
provide an easier reach

13

package objects to rescue

14

You can extend the package objects from traits/classes
and acquire their methods into the package

Chained package clauses

Less noisy

Lightweight

One big difference, package declaration now brings only
the tail package into scope

package foo.bar will not bring in foo into scope

A critical change necessary due to name conflicts
15

tailrec

Scala has offered limited tail recursion

You had no indication if the recursion was tail recursive

Now you can assert if it is tail recursive

If compiler could not optimize for tail recursion, you get
an error

16

tailrec

17

If you remove the error goes away

Type Specialization

Generic types substitute types with upper bound types

For primitive types, this involves boxing/unboxing overhead

You can avoid this by using @specialized

This will specialize for all primitive types

You can ask for specific types using @specialized(type1,
type2,...)

For unspecialized types, it will use the regular type erasure

Specialization happens only if there is at least one
parameter of specialized type or its array

18

Type Specialization

19

References

http://www.scala-lang.org/node/7009

20

Venkat Subramaniam
venkats@agiledeveloper.com

twitter: venkat_s

Thank You!

