
DESIGN PATTERNS IN
JAVA AND GROOVY

speaker.identity {
 name 'Venkat Subramaniam'
 company 'Agile Developer, Inc.'
 credentials 'Programmer', 'Author', 'Trainer'
 blog 'http://agiledeveloper.com/blog'
 email 'venkats@agiledeveloper.com'
}

Abstract
You're most likely familiar with the Gang-of-four design
patterns and how to implement them in Java. However,
you wouldn't want to implement those patterns in a similar
way in Groovy. Furthermore, there are a number of other
useful patterns that you can apply in Java and Groovy. In
this presentation we'll look at two things: How to use
patterns in Groovy and beyond Gang-of-four patterns in
Groovy and Java.

Patterns overview

Implementing common patterns in Groovy

Beyond Gang-of-four patterns in Java and Groovy

Lots of examples
2

Abstract Factory

You want to abstract the object creation process

Extensible to add new types of objects

Helpful to create consistent families of objects

3

Abstract Factory

I have a set of operation that I want to perform on
objects of different type. I need to create these objects
first, then call methods.

In Java, the Class class acts as a factory as well

4

Abstract Factory–Java

5

Abstract Factory–Groovy

6

In Groovy, name of class refers to Class object

Groovy GDK also has added methods to Class

Pluggable Behavior-Strategy

You want to vary the guts or internal implementation
of certain algorithm or task

You want to be able to plug some behavior or variations
in the middle of a certain computation or task

7

Pluggable Behavior–Java

8

Pluggable Behavior–Groovy

9

Closures in Groovy make it real simple to realize this

Pluggable Behavior–Groovy

10

You can store away the pluggable code for later use, if
you like

Execute Around Method(EAM)

You have a pair of operation that needs to be
performed before and after operations

You have a resource that needs to be opened/connected
to and then safely/automatically closed

You want deterministic control of when resource is
deallocated (after all you can’t rely on the finalizer)

11

EAM–Java

12
Hmm, not very elegant, is it?

EAM–Groovy

13

Iterator

You want to traverse a collection of objects in a
consistent manner independent of the type of
collection

An external iterator allows you to control the actual
traversal

An internal iterator takes care of that—you provide
code that needs to be executed for each element in the
collection

14

Iterator–Java
You can use for (for-each) on any
class that implements Iterable
interface—external iterator

15

Iterator–Groovy
Groovy each method provides internal iterator

16

Cascade

You want to perform a series of operations on an object

The operations form a cohesive sequence or thread of
calls

Provides a context, reduces noise

Call the method on the result of previous call or
establish a context object

17

Cascade–Java

18

Cascade–Groovy
Groovy provides a special set of methods: with and
identity

19

Intercept, Cache, Invoke

You’re interested in synthesizing method

However, you don’t want to take a performance hit
each time your dynamic method is called

You want to intercept the call, create and cache the
implementation, and invoke it

20

Intercept, Cache, Invoke

21

Delegation

You want to delegate calls to methods of another object

You prefer to use delegation over inheritance

22

Delegation–Groovy

23

See Next Page

Delegation–Groovy...

24

Delegation–Groovy...

25

Delegation–Groovy...

That’s nice, but...

That’s a lot of work

You don’t want to pay that toll each time you want to
delegate

Let’s refactor

26

Delegation–Refactored

27

What’s that?

Next Page...

Elegant, eh?!

Delegation–Refactored

28

References
Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm,
Ralph Johnson, John M. Vlissides, Addison-Wesley.

Smalltalk Best Practice Patterns, by Kent Beck,
Prentice Hall.

Programming Groovy: Dynamic Productivity for the
Java Developers—Venkat Subramaniam, Pragmatic
Bookshelf.

29

You can download examples and slides from
http://www.agiledeveloper.com - download

Thank You!

Please fill in your session evaluations

30

