
Concurrent Programming in C++

Venkat Subramaniam
venkats@agiledeveloper.com

@venkat_s

Platform Neutral

• The standard concurrency model makes it possible
to write portable concurrent code

Level of Concurrency

• Number of threads that can be run concurrently by the hardware

• May be number of CPU cores available on the hardware

Creating Thread

Starting Thread Is Easy
• But, we immediately have to worry about

concurrency issues

Manage Shared Resources

• Careful, unlock may not happen on exception

• We’ll solve this later

Thread Function
• To launch a thread pass it a callable

• It can be a function like we saw

• It can be a lambda expression

• It can be an object with operator() overloaded

Passing Object Gotcha

• Thinks thread1 is a function declaration taking a pointer to a function

Passing Object
• When a callable object is passed, a copy of the

object is passed. It is safe to destroy the object
after passing.

Think Abstraction

• Keep in mine the difference between the thread
object and the thread of execution

• The thread object may die long before the thread of
execution is finished

• The thread of execution may finish long before the
thread object dies

join or detach
• Once you start a thread, either join or detach from it

• Join will wait for the thread to finish

• detaching a thread makes it a daemon thread

• You mean to fire and forget these threads

• No longer attached to thread object

• Not doing either may result in a runtime error

detaching

joinable?

joining

• If you want to wait for the thread to finish before
moving on

• Use caution in join

• What if an exception is thrown?

Consider Exceptions

join properly…

• verbose

• Mundane

• Error prone

Use RAII pattern
• Resource Acquisition Is Initialization pattern

Use RAII pattern

Thread Argument Gotcha

Thread Argument Gotcha

• Decide to pass a value or a reference

Concurrency & Mutability
• Read-only data are the safest from the currency point

of view

• Mutability is not very pleasant

• shared mutability is purely evil

• This is the source of many concurrency issues

Rule for Concurrency

• A concurrent code should not break an invariants
from the point of view of observing threads

• It’s our responsibility to avoid race conditions

Race Condition

Avoiding Race Condition

• Risky, however

• What if there was an exception, we forget to unlock, or a path misses call to unlock?

Avoiding Race Condition

• Resource Acquisition Is Initialization Pattern here again

lock_guard not a Panacea

• We can’t get confident just because we see mutex
or lock_guard in code

• Encapsulating the data within an object will not
totally cure our issues either

Don’t Let the data Escape
• Escaping is one of the common issues that leads to

concurrency bugs

• Not only should methods of an object encapsulate
it, it should also not allow data to escape

• Anywhere a pointer or reference is returned from a
method or passed to another method is a source of
potential trouble

Avoiding Deadlock

• Deadlocks can happen if we lock multiple mutex
one at a time

• To avoid we often aim for an ordered lock, but that
can be hard to implement

• std::lock comes to help

Deadlock

Deadlock

Fixing Deadlock

Multiple Locks

• Never acquire multiple locks one at a time

• Always ask for them in one shot

• Never lock on an already acquired mutex

• Avoid Nested Locks

unique_lock
• Unlike lock_guard, these are movable (but not

copyable)

• They can be locked later - in deferred mode, if
desired

• You can unlock and lock again on this one as
needed

Using unique_lock

Another Race Condition

Another Race Condition

Another Race Condition

• Need to lock around the entire operation

• But, how…

Another use of unique_lock

Another Approach

Need for call_once

Using call_once & once_flag

Synchronizing

• Shared variables are not the smartest way to
communicate and synchronize between threads

• Need to avoid busy waits and polling

conditional_variable

conditional_variable

condition_variable
• When wait is called, it checks the condition

• If condition is true, proceeds

• If condition is false, it will release the lock and wait

• Once notified, it will acquire the lock, check the
condition

• If condition satisfied, moves forward

• Otherwise, releases lock and waits

Always Timeout
• Anytime you call a function that will wait for some

thread or task to complete, always specify a
timeout

• Look for variations of wait that take a timeout

• duration

• until a particular time

An Awkward Use

• Though conditional_variable
may be used here, it is not
the right fit

Future

• Future is useful for one-off event

• It may accompany some data with it

Using Future

async launch options
• deferred - postpone until get or wait called

• May run in the callers thread

• Lazy and may never run—efficient

• async- run in a new thread

• std::launch::deferred

• std::launch::async

• std::launch::deferred | std::launch::async

async launch options

async launch options

Future & Thread Safety

• Future is thread safe for access by worker thread
and calling thread

• Future is *not* thread safe for multiple threads to
access the same instance

Future & Thread Safety

Future & Thread Safety

packaged_task

• Think of this as a connector between a function and
a future of the result of that function

• Useful to schedule a set of functions for execution
on a thread pool

packaged_task
• General purpose function

• It is a callable

• It’s operator() is a void function that takes some
parameters

• It’s get_future function eventually returns a future of
computed result

• Can be passed to thread

• get the future and then send of task to thread

packaged_task

What’s really doing on?

function

result (future)

Worker threadcaller thread

• Takes the result from worker and sends it to caller as future

What if something goes wrong?

• Promise is like a packaged_task in that you can get
a future from it

• The user of a Promise can either set a value or set
an exception

• Use Promise as a mechanism to communicate
between the worker thread and the caller

Using Promise

Using Promise

Thank you
venkats@agiledeveloper.com

@venkat_s

