
CARING ABOUT
CODE QUALITY

speaker.identity {
 name 'Venkat Subramaniam'
 company 'Agile Developer, Inc.'
 credentials 'Programmer', 'Author', 'Trainer'
 blog 'http://agiledeveloper.com/blog'
 email 'venkats@agiledeveloper.com'
}

Abstract
We all have seen our share of bad code. We certainly
have come across some good code as well. What are the
characteristics of good code? How can we identify
those? What practices can promote us to write and
maintain more of those good quality code. This
presentation will focus on this topic that has a major
impact on our ability to be agile and succeed.

Characteristics of quality code

Metrics to measure quality

Ways to identify and build quality
2

Why care about Code Quality?

You can’t be Agile if your Code sucks

3

Code Quality

4

Change in Requirements

5

[LARM03]

Cost of Defect

6

[BOEH01]

Cost
to

correct
a

defect

Requirements Design Code Test Operation

20

40

60

80

100

0

Magnitude of Computational Problem

European Space Agency took 10 years and $8 billion dollars to develop
Ariane 5

On June 4, 1996, it took its first voyage with $500 million cargo

In 40 seconds its inertial reference system failed

64-bit floating point number representing the horizontal velocity of
the rocket was converted into 16-bit signed integer—conversion failed
because of overflow

Vehicle was deliberately destroyed for safety

7

http://www.cnn.com/WORLD/9606/04/rocket.explode/

Major Misfires

September 1999: Metric mishap causes loss of NASA
orbiter [CNN99]

March 2001: Nike i2 Forecast System found to be
inaccurate–Nike takes inventory write-off [CIO03]

August 2004: NASA: DOS Glitch Nearly Killed Mars
Rover–Story on Spirit: “...The flaw, since fixed, was only discovered after days of

agonizingly slow tests...“ [EXTR04]

June 2007: United flights grounded by computer glitch
[COMP07]

...

8

Software Defect Reduction Top 10 List

Finding, fixing problem in production is 100 times more
expensive than during requirements/design phase.

40-50% of effort on projects is on avoidable rework.

~80% of avoidable rework comes from 20% of defects.

~80% of defects come from 20% of modules; about half
the modules are defect free.

~90% of downtime comes from at most 10% of defects.

9[BOEH01]

Software Defect Reduction Top 10 List

Peer reviews catch 60% of defects.

Perspective-based reviews catch 35% more defects than
nondirected reviews.

Disciplined personal practices can reduce defect
introduction rates by up to 75%.

...it costs 50% more per source instruction to develop
high-dependability software product...

~40-50% of user programs have nontrivial defects.

10[BOEH01]

But, Still...

The evidence is overwhelming, but still...

We never seem to have time to do it, but always seem
find time to redo it?!

11

What’s Quality?

Measure of how well the software is designed and
implemented

Quality is subjective

12

Why care, there’s QA?!

Can’t QA take care of quality, why should developers
care?

QA shouldn’t care about quality of design and
implementation

They should care about acceptance, performance,
usage, and relevance of the application

Give them a better quality software so they can really
focus on that

13

“Lowering Quality Lengthens Development Time”
http://c2.com/cgi/wiki?FirstLawOfProgramming—First Law of Programming

More Maintenance...

You’ll do more maintenance if quality is better

Why? It’s easier to accommodate change, so you can
be flexible and relevant

“Maintenance is a solution, not a problem”

“Better methods lead to more maintenance, not less”

14[GLAS03]

Pay your Technical Debt

Technical debt are activities (like refactoring,
upgrading a library, conforming to some UI or coding
standard, ...) that you’ve left undone

These will hamper your progress if left undone for a
longer time

15

Measuring Quality

Hard to measure

Need to find useful metrics

Example of wrong metric: Lines-Of-Code (LOC)

Is more code better or worse?

You can produce more code?

You needed that much code for that?

16

Measuring Quality...

Highly subjective

Highly qualitative

Is the code readable, understandable?

Is the code verbose?

Variable/method names that are meaningful

Simple code that works

Does it have tests? What’s the coverage?

17

Ways to Improve Quality

Start early

Don’t Compromise

Schedule time to lower your technical debt

Make it work; make it right (right away)

Requires monitoring and changing behavior

Be willing to help and be helped

Devise lightweight non-bureaucratic measures

18

Individual Efforts
What can you do?

Care about design of your code

Good names for variables, methods, ...

Short methods, smaller classes, ...

Learn by reading good code

Keep it Simple

Write tests with high coverage

Run all your tests before checkin

Checkin Frequently
19

Individual Efforts

Learn your language

If you’re switching languages or using multiple
languages, know the differences

Avoid Cargo cult programming–following rituals, styles,
principles, or structure that serves no real purpose

Court feedback and criticism

20

Keep It Simple!
Don’t build Rube Goldberg Machines–something complex
to do simple things

21

Keep It Simple!

“There are two ways of constructing a software
design. One way is to make it so simple that there
are obviously no deficiencies. And the other way is
to make it so complicated that there are no obvious
deficiencies,”–C.A.R. Hoare.

22

Team Efforts

Avoid shortcuts

Take collective ownership–Team should own the code

Promote positive interaction

Provide constructive feedback

Constant code review

23

You said Code Review?

Code review is by far the proven way to reduce code
defects and improve code quality

But, code review does not work?

It depends on how it’s done

24

If code review is...
Do you get together as a team, project code, and
review?

At least three problems?

You hate being critiqued that way

You’d much rather write more code in that time

Project manager says “last time you guys got together
for review, fight ensued and one guy quit, no more
code reviews for you...”

Don’t make it an emotionally draining

25

Seeking and Receiving Feedback

We’ve used code review very effectively

Code reviewed by one developer right after task is
complete (or anytime before)

Rotate reviewer for each review

Say positive things, what you really like

Constructively propose changes

Instead of “that’s lousy long method” say, “why don’t
you split that method...”

26

Tactical Continuous Review

Review not only code, but also tests

Do not get picky on style, instead focus on correctness,
readability, design, ...

27

“Code Review makes me a Hero or makes me Smarter,”–
Brian C.

Value of Review

“Rigorous inspection can remove up to 90 percent of
errors before the first test case is run.”

“Reviews are both technical and sociological, and both
factors must be accommodated.”

[GLAS03]

28

Broken Window Problem

Study shows broken windows lead to vandalism

Code that no one cares for deteriorates quickly

Do not tolerate your code being trashed

Fix code that’s not elegant or looks broken

Keep your code always releasable [SUBR06]

29[FIBW, THOM99]

Treat Warning as Errors

Don’t say “that’s only a warning”

Warnings may have hidden problems

They’re annoying and distracting

Use compiler options to treat warnings as errors

If unavoidable, suppress (selectively)

30

Cohesion

The code is focused, narrow, small

It does one thing and one thing well

Single Responsibility Principle

Higher cohesion -> Lower Cyclomatic Complexity (see
later)

Strive for higher cohesion

At method, class, component, subsystem level

31

Extensibility and Flexibility

You build abstraction, hierarchy, ... to make your code
extensible

Extensibility is an anticipation

What if the requirement does not meet what you
anticipated?

You have more code to work with and it is hard to
extend in the new direction because of that

Predicting is hard
32

Triangulation

Postpone generalization

Wait for code to evolve a bit

You see evidence of what’s needed and generalize
based on real use

But, won’t that be expensive?

Changes will require less work since you have lesser
code to deal with

33
[Beck02]

Cohesion and Cost of Change

Code that’s doing too many things is hard to maintain

Developer who must make change has to understand
lots of things

Code is complex, has higher cyclomatic complexity

Your change likely will break something else

Smaller, cohesive code is less expensive to maintain

34

Code Coverage
How much (%) of your code is covered by test?

How about paths through your code

Is there code that deserve not to be tested?

Instrumentation tools can tell you which and how much
code is covered

Tools: [Java] JCover, Cobertura, ... [.NET] NCover,... [C
++] C++ Test Coverage Tool, Bullseye Coverage, CTC++,
Visual Studio, ...

Tools like Guantanamo and Ashcroft delete code that
have no test!

35

Code Coverage

Code Test Coverage

Tells you how much of your code’s exercised

Does not tell you about test quality, however

36

Complexity

Long methods cause pain

Paths in code

Unnecessary and stale comments cause confusion

Large classes are hard to maintain

...

37

Cyclomatic Complexity
Thomas McCabe’s

Counts distinct paths through code

Number of decision points + 1

of edges - # of nodes + 2

Cyclomatic Complexity Number (CCN) > 10 is risky

Strive for lower count

Consider refactoring and fortify your tests

Tools: [Java] JavaNCSS, PMD, CheckStyle, ... [.NET] FxCop,
Visual Studio Code Analyzer, Resharper, NDepend, ... [C++]
Code Counter, CMT++, Cyclo, ...

38

Cyclomatic Complexity

For your tests to have reasonable code coverage:

of tests > CCN

39

Cyclomatic Complexity

Cyclomatic Complexity Number

Gives an indication of degree of hardness

Does not indicate degree of defect

40

Code Size

Addresses problems arising from large, low cohesive
code

Code Size Rules check for the size of code and flags if it
exceeds

How small is small

Code must fit into a screen (without lowering font size)
[about 15 to 20 statements per method]

41

Code Duplication

Duplicated code is expensive to maintain

Hard to fix bugs, hard to make enhancements

Why do we duplication code then?

Path of least resistance–you’re not breaking existing
code, right?

What to do? Identify and extract methods

Tools: [Java] PMD, ... [.NET] Simian, ... [C++] ...

Tools: Simian, StrictDuplicateCode, ...
42

Assessing Risk

43

Complexity Automated Tests Risk
Low Low High
Low High Low
High Low HIGH
High High Medium

C.R.A.P Metric
Change Risk Analysis and Prediction (CRAP)

Experimental metrics and tool

Measures effort and risk to maintain legacy code

Uses Cyclomatic Complexity (comp) and code coverage (cov)

Created by Bob Evans and Alberto Savoia of Agitar [SAVO07]

For a method m, Version 0.1 of the formula is

 CRAP(m) = comp(m)^2 * (1-cov(m)/100)^3 + comp(m)

Lower value => low change and maintenance risk

Lowest value 1. With no tests, risk increases as square of
complexity

44

C.R.A.P Metric

45

C.R.A.P Metric

30 = threshold for crappiness

 A complex method (within 30 CCN) can stay below the
threshold with adequate tests

CRAP Load: work estimate to address crappiness

CRAP Load N means indicates the number of tests you need to
write to bring your project below the threshold

46

crap4J is an experimentation tool to measure this metric

Test Quality

Low coverage indicates inadequate test

Higher coverage does not mean adequate test, however

How good is the quality of test?

Did you cover different conditions, boundaries, ...

Mutating testers can help determine that

[Java] Jester

[.NET] Nester

[C++] ?

47

Code Duplication

Code duplication is common

Increases maintenance cost

Makes it hard to fix bugs and make enhancements

[Java] Simian, PMD (Copy Paste Detector), ...

[.NET] Simian, ...

[C++] Simian, ...

48

Code Analysis

Analyzing code to find bugs

Look for logic errors, coding guidelines violations,
synchronization problems, data flow analysis, ...

[Java] PMD, FindBugs, JLint, ...

[.NET] VS, FxCop, ...

[C++] VS, Lint, ...

49

Identifying Problem

50

"It was on one of my journeys between the EDSAC room
and the punching equipment that…the realization came

over me with full force that a good part of the remainder of
my life was going to be spent in finding errors in my own
programs,"—Maurice V. Wilkes, pioneer in early machine

design and microprogramming.

What is Code Smell?

It’s a feeling or sense that something is not right in the
code

You can’t understand it

Hard to explain

Does some magic

51

Code Smells

Duplication

Unnecessary complexity

Useless/misleading comments

Long classes

Long methods

Poor naming

Code that’s not used

52

Improper use of inheritance

Convoluted code

Tight coupling

Over abstraction

Design Pattern overuse

Trying to be clever

...

What?

53

Dealing with Code Smell

Keep an eye on it

Indicates code that needs either refactoring or some
serious redesign

Technical Debt

Take effort to clear the air–frequently

54

From Writing to Coding…

William Zinsser Wrote “On Writing Well” 25 years
ago!

He gives good principles for writing well

These principles apply to programming as much as
writing non-fiction

Simplicity

Clarity

Brevity

Humanity
55

Clear, not Clever

Don’t be clever, instead be clear

56

“I never make stupid mistakes. Only very, very clever ones,”—Dr Who

No Rush

Don’t code in a Hurry—”Haste is Waste”

Take time to read the code and see if is what you meant

Take the time to write tests—make sure the code does
what you meant, not what you typed

Code defensively

57

“Act in haste and repent at leisure: Code too soon and
debug forever,”—Raymond Kennington.

Commenting and Self-Documenting Code

Lots of comments are written to coverup bad code

Comments should say Why or purpose, not how

Don’t comment what a code does—I can read the code
for that—keep it DRY

Don’t keep documentation separate from code

Use javadoc (Java), doxygen (C++), NDoc (C#),...

At least provide a pointer to where it is

If you copy and paste, check if comments are still
relevant

58

Commenting and Self-Documenting Code

Don’t use variable names that are cryptic or too brief

Keep code simple

Keep code small

Keep comments minimum and meaningful

Give names for constants

order(CoffeeSize.LARGE) instead of
order(3) // large

59

Commenting and Self-Documenting Code

Use Assertions to document assumptions

Document unique, special, or unexpected conditions

Keep them short and clear, however

Don’t pour emotions and arguments

Keep an eye for stale comments

60

Code for Clarity—self-documenting...

Can someone who does not know English still understand
your code?

Can someone who does not speak your language still
understand your code?

Some languages and frameworks are being created by
experts who don’t speak English as their first language

Ruby - Japan

Groovy - European and US collaborators
61

Comments on Commenting

Justify violation of good programming practices or styles

If you’ve to use some convoluted logic, unroll a loop, ...
drop a comments to say why

Will avoid unnecessary refactoring attempt only to
discover that it has to stay that way

Will help check if the assumptions stated are still valid

Don’t comment clever code, rewrite it

If everyone stumbles on a particular problem, don’t comment
to caution, instead fix it

62

Error In Your Face

Raise exceptions so they’re in your face

Don’t let problems slip by

Also, if it is hard to locate problems during
development, it will only get worse for your support

Find easy ways to identify what’s wrong

Log is good, but provide a code to easily located the
relevant message in it

63

Summary
Practice tactical peer code review

Consider untested code is unfinished code

Make your code coverage and metrics visible

Don’t tolerate anyone trashing your code

Write self documenting code and comment whys

Use tools to check code quality

Use tools continuously—that is automated

Treat warnings as errors

Keep it small

Keep it simple 64

References
[Beck02] "Test Driven Development: By Example," by Kent Beck, Addison Wesley, 2002.

[BLOC05] "Java Puzzlers: Traps, Pitfalls, and Corner Cases," by Joshua Bloch, Neal Gafter,
Addison Wesley, 2005.

[BOEH01] "Software Defect Reduction Top 10 List," by Barry Boehm and Victor R. Basili,
IEEE Computer, January 2001. (http://www.cebase.org/www/resources/reports/usc/
usccse2001-515.pdf).

[GLAS03] "Facts and Fallacies of Software Engineering," by Robert L. Glass, Addison-
Wesley, 2003.

[FIBW] "Fixing Broken Windows," on Wikipedia (http://en.wikipedia.org/wiki/
Fixing_Broken_Windows).

[THOM99] "The Pragmatic Programmer: From Journeyman to Master," by Andy Hunt
and Dave Thomas, Addison-Wesley, 2000 (Excerpt on Software Entropy and Broken
Window Problem can be found at http://www.pragprog.com/the-pragmatic-programmer/
extracts/software-entropy).

65

You can download examples and slides from
http://www.agiledeveloper.com - download

Thank You!
Please fill in your session evaluations

66

You can download examples and slides from
http://www.agiledeveloper.com - download

