
PaD - 1The Pragmatic Programmers

Practices of an

Venkat Subramaniam

Developer
Agile

venkats@agiledeveloper.com andy@pragmaticbookshelf.com

Andy Hunt

PaD - 2The Pragmatic Programmers

Abstract
You have worked on software projects with varying

degree of success. What were the reasons for the
success of your last project? What were the reasons for
those that failed? A number of issues contribute to
project success - some non-technical in nature. In this
presentation the speakers will share with you practices
in a number of areas including coding, developer
attitude, debugging, and feedback. The discussions are
based on the book with the same title as the talk.

In this session you will learn about practices beyond what
well know methodologies prescribe. While we
reemphasize some popular practices, we will also
discuss other often overlooked, but important practices
- practices that contribute to success of projects.

PaD - 3The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 4The Pragmatic Programmers

Agile Software Development
• What’s makes software development

challenging?

• What’s Agility?

• The Spirit of Agility

Continuous development,
not episodic

PaD - 5The Pragmatic Programmers

Agile Manifesto

PaD - 6The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 7The Pragmatic Programmers

Practices and Balance
• We’ll start with often convincing, but

troubling thoughts

• We’ll discuss good practices,
recommendations, dos and don’ts

• Summarize our advice for the
practice

• What It Feels Like and
• Keeping your balance

PaD - 8The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 9The Pragmatic Programmers

Practices Discussed
• We’ll discuss select practices in areas

–Beginning Agility
– Feeding Agility
–Delivering What Users Want
–Agile Feedback
–Agile Debugging
–Agile Collaboration

PaD - 10The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 11The Pragmatic Programmers

Beginning Agility
• What makes a big difference in Agile

Development?

• It’s not tools, techniques, process,…

• It’s you and your team
–Your attitude, your ego, how you get along

with the team, how the team gets along with
you – makes a big difference

• So, we start by focusing on you and your
attitude

PaD - 12The Pragmatic Programmers

Work For Outcome

• Worst kind of job to hold – working in a
reactive team

• Fixing the problem must be top priority
• Blame don’t fix bugs
• Focus on fixing problem than affixing

blame
• Be part of a solution, not the problem

The first, and most important step in addressing a problem
is to determine who caused it. Find that moron! Once
you’ve established fault, then you can make sure that the
problem doesn’t happen again. Ever.

PaD - 13The Pragmatic Programmers

Work for Outcome…

What It Feels Like
It feels safe to admit that you don’t have the answer. A big mistake

feels like a learning opportunity, not a witch hunt. It feels like the
team is working together, not blaming each other.

Be part of the solution, not the problem. Blame doesn’t fix
bugs or create working code, so instead of pointing fingers,
point to possible solutions—every mistake is an opportunity
to learn, and it’s the positive outcome that counts.

Keeping Your Balance
• “It’s not my fault” is rarely true. “It’s all your fault” is

usually equally incorrect
• If you aren’t making any mistakes, you’re probably not

trying hard enough
• No point arguing if it’s a feature or flaw, if you can fix

the darn thing quick…

PaD - 14The Pragmatic Programmers

Criticize Ideas, Not People

• We take pride in what we do
• Design discussions sometime get out of hand – focused

on who instead of what
• Ways to present your questions…
• Development is innovative, requires several minds and

creative ideas
• Negativity kills innovation
• Ideas shape solutions
• Set deadline, argue opposite, use mediator, support

decision
• Realize life is full of compromise

You have a lot invested in your design. You’ve put your
heart and soul into it. You know it’s better than any one
else’s. Don’t even bother listening to their ideas; they’ll just
confuse the issue.

PaD - 15The Pragmatic Programmers

Criticize Ideas, Not People…

What It Feels Like
It feels comfortable when the team discusses the genuine merits and

possible drawbacks of several candidate solutions. You can reject
solutions that have too many drawbacks without hurt feelings, and
imperfect (but still better) solutions can be adopted without guilt.

Criticize ideas, not people. Take pride in arriving at a solution
rather than proving whose idea was better.

Keeping Your Balance
• Always contribute ideas, but don’t expect everyone to

use it
• Be realistic, fair, ask yourself if your concerns are

reasonable
• No “best practices,” there are only “better practices”
• Be unemotional, not indifferent or unconcerned

PaD - 16The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 17The Pragmatic Programmers

Feeding Agility
• Agility requires constant motion
• In corporate world, there’s only one

person to look out for your interests –
you

• Evolution appears episodic if you hide in
a cave

• You have to keep up with change –
incrementally and iteratively

PaD - 18The Pragmatic Programmers

Keep Up With Change

• You are in an exciting, ever changing field
• Learning is part of our profession
• You can’t be an expert at everything, but
• Don’t stay ignorant of what’s evolving
• Learn iteratively and incrementally
• Get the latest buzz
• Attend local user groups
• Attend workshops or conferences
• Read voraciously

Technology changes so fast it’s overwhelming. That’s just
the nature of it. Stick to your old job with the language you
know; you can’t possibly keep up.

PaD - 19The Pragmatic Programmers

Keep Up With Change…

What It Feels Like
You feel aware of what’s going on; you know about technologies as

they are announced and adopted. If you had to switch jobs into a
new technology area, you could.

Constantly be aware of new and emerging technologies. You
don’t have to become an expert at everything, but be familiar
with where the industry is headed.

Keeping Your Balance
• Gauge your effort – not everything new matures
• Don’t try to be an expert in everything
• If you’re an expert at a few things, it’s easier to gain

expertise in selected new areas
• Understand not just technology, but what it solves
• Don’t jump up to convert you app to new technology

just for the sake of learning

PaD - 20The Pragmatic Programmers

Invest In Your Team

• Members of your team have different
expertise and strengths

• It’s to your benefit to be in mature and
qualified team

• You loose what you don’t use
• Have brown-bag sessions
• Raise the awareness of your entire team

Don’t share what you know—keep it to yourself. It’s to your
advantage to be the Smart One on the team. As long as
you’re smart, you can forget about those other losers.

PaD - 21The Pragmatic Programmers

Invest In Your Team…

What It Feels Like
It feels like everyone is getting smarter. The whole team

is aware of new technology, and starts pointing out
how to apply it, or points out pitfalls to watch for.

Raise the bar for your team—increase their knowledge and
skills. Brown bag sessions help bring people together,
getting them excited about technologies or techniques that
will benefit your project.

Keeping Your Balance
• Pick good books for your sessions
• Not all the topics will be winners, or even seem

appropriate at the moment. Pay attention anyway
• Keep discussion in the team
• Stretch beyond purely technical books
• Don’t turn these into design meetings

PaD - 22The Pragmatic Programmers

Feel The Rhythm

• Failure walks hand-in-hand with
irregularity

• Haphazard activities often jolt you, not
help

• Agile projects have rhythms and cycles
• Makes life easier
• A lot of practices have to happen all

the time, through our your
development cycle

• Several small activities have to happen
– check in code often, review in
increments, do continuous builds, …

• Biggest rhythm of all is iteration itself
• Set the length so it’s easier to reach

decisions, keep the project moving
forward

We haven’t had a code review in a long time, so we’re going
to review everything all this week. Also, it’s probably about
time we made a release as well, so we picked three weeks
from Tuesday for a next release.

PaD - 23The Pragmatic Programmers

Feel The Rhythm…

What It Feels Like
It feels like consistent, steady rhythm. Edit, run tests, review, over a

consistent iteration length, and release. It’s easier to dance when
you know when the next beat falls.

Don’t let tasks bunch up, instead, tackle them regularly. It’s
easier to tackle them regularly when you maintain steady,
repeatable intervals between events.

Keeping Your Balance
• Have no leftovers – have all code tested and checked in

by end of day
• Follow fixed regular length iteration
• Find a comfortable iteration length and stick to it
• Set small reachable goals, celebrate your success

PaD - 24The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 25The Pragmatic Programmers

Delivering What Users Want
• Agility depends heavily on your ability to

identify and adapt change

• Affects your ability to develop
–on time
–within budget
–and creating a system that actually meets

the users' needs

PaD - 26The Pragmatic Programmers

Let Customers Make Decisions

• Developers make a lot of decisions
• Not all decisions must be made by developers –

especially critical business decisions
• You can let customers decide now or they will

decide later at much greater cost
• Present customers with pros and cons, show

potential cost and benefits from business point
of view

Developers are creative and intelligent, and know the most
about the application. Therefore, developers should be
making all the critical decisions. Any time the business
people butt in they just make a mess of things; they don’t
understand logic the way we do.

Decide what you
shouldn’t decide

PaD - 27The Pragmatic Programmers

Let Customers Make Decisions…

What It Feels Like
Business applications are developed as a partnership between the

business owner and the developers. It should feel like a
partnership—a good, honest, working relationship.

Present the details and let your customers decide. Developers,
managers, or business analysts shouldn’t make business
critical decisions—let the business owners make those.

Keeping Your Balance
• Record decisions and reasoning, but don’t turn that into

documentation heavy
• Don’t bug busy business people with trivial low-level details that

don’t impact business
• Don’t assume a low-level details doesn’t impact business
• Don’t know is an acceptable answer for a business owner. Advise

best you can, take their input, and prepare for eventual change.

PaD - 28The Pragmatic Programmers

Let Design Guide, not Dictate

• Design is key to Agile development
–Don’t use Agility as an excuse to hacking
–Agility discourages ceremony, not design

• Design will evolve as your understanding
evolves

• Strategic Design vs. Tactical Design
• How do you evaluate the quality of

design?

Design documents should be as detailed as possible, so that
any lowly coder can just type in the code… Don’t forget all
the fields of the class. Never deviate from the design, no
matter what you discover while coding.

PaD - 29The Pragmatic Programmers

Let Design Guide, not Dictate…

What It Feels Like
A good design is accurate, but not precise. That is, what it says

should be correct, but it shouldn’t go far as to include details that
might change or that are uncertain. It’s an intent, not a recipe.

A good design is a map that points you in the right direction.
It’s not the territory itself; it shouldn’t dictate the specific
route. Do not let the design (or the designer) hold you hostage.

Keeping Your Balance
• No “Big Design Up-front” doesn’t mean no design
• Design will change, but there is still value in initial

design – what you lean from it is invaluable
• No need to be bogged down with heavy weight tools

– If white boards, sketches and PostIt notes are excellent design
tools

PaD - 30The Pragmatic Programmers

Fixed Prices are Broker Promises

• Telling customers “you’ll know when we’re done” is not reasonable
• But, fixed price contracts are problematic
• We have to keep up with requirements change, technology change
• How to avoid broker promise, can we estimate better, or enter into

different deal?
• You can estimate better if project is similar to what you’ve done

before. Estimate if you can.
• Alternately

– Offer to build initial, small, useful portion of system within 6-8
weeks

– Iterative development can help you and your clients see how
things are progressing

– Allow client to continue or pull the plug anytime

We have to deliver a fixed bid for this project. We don’t
have all the details yet, but need to put a bid in. I need an
estimate for the whole team by Monday, and we’ll have to
deliver the whole project by the end of the year.

PaD - 31The Pragmatic Programmers

Fixed Prices are Broker Promises…

What It Feels Like
Your estimates will change throughout the project—they aren’t fixed.

But you’ll feel increasingly confident that you can forecast the
amount accomplished with each iteration better and better. Your
estimates improve over time.

Let the team work on this project, with this client, to get
realistic estimates. Give the client control over their features
and budget.

Keeping Your Balance
• If you’re in a plan-based, non-agile environment,

consider a plan-based, non-agile development
methodology, or consider a different environment

• If you refuse to give estimates, you may lose the contract to
someone else who gives an estimate, however, unrealistic it is

• Being agile doesn’t mean, “don’t ask me for estimates”
• You might consider fixed price per iteration set in the contract

PaD - 32The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 33The Pragmatic Programmers

Agile Feedback
• Feedback is a critical component of Agile

Development to make small continuous
adjustments

• What are the ways to get feedback?
• Feedback can come from

–Code
–Builds
–Team
–…

PaD - 34The Pragmatic Programmers

Different Makes a Difference

• “It works on my machine” isn’t good enough
• If something is different, it will make a

difference
• If your product has to run on different versions

of JVM, CLR, platform of OS, … it’s your
responsibility to make sure it works well on
those

• Don’t depend on your users to figure that our
for you

• Automate unit tests on platforms
• Use VMWare or Virutal PC if hardware is a

concern

As long as the code works on your machine, that’s okay.
Who cares if it works on some other platform; you don’t
have one.

Automate to
save time

PaD - 35The Pragmatic Programmers

Different Makes a Difference…

What It Feels Like
It feels like unit testing, only more so—it’s unit

testing across multiple worlds.

Run unit tests on each supported platform and environment
combination. Use continuous integration tools to run the tests.
Find problems proactively before they find you.

Keeping Your Balance
• Hardware is cheaper than your time
• Be selective if you have too many platforms
• Even if you have fewer clients on a platform, it is

necessary to test
• Set up your continuous integration tool so you’re not

bombarded with several notifications for same error

PaD - 36The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 37The Pragmatic Programmers

Agile Debugging
• Murphy’s law says “If something can go

wrong, it will”
• You can’t timebox debugging sessions
• But, you can be proactive about bugs and

problems, however
–Learning to keep solution logs
–Treating warnings as errors
–Attacking problems in isolation…

PaD - 38The Pragmatic Programmers

Attack Problems in Isolation

• Stepping through code may help catch more
stress

• Dealing with entire code base does not make it
easy to ask for help when problems erupt

• Layering is a collateral advantage of unit
testing

• Isolate problem from its surroundings
• You can focus more on what’s relevant

– You can experiment without worries
– You can get to the problem quicker

Stepping line-by-line through a massive code base is pretty
scary. But the only way to debug a significant problem is to
look at the entire system. All at once. After all, you don’t
know where the problem may be, and that’s the only way
to find it.

Prototype to
isolate

PaD - 39The Pragmatic Programmers

Attack Problems in Isolation…

What It Feels Like
When faced with a problem that you have to isolate, it

feels like searching for a needle in a teacup, not a
needle in a haystack.

Attack problems in isolation. Separate the problem from its
surroundings, especially in a large application, and you’ll save
time and reduce stress.

Keeping Your Balance
• If you separate code from its environment and

– the problem goes away, you’ve helped isolate the problem
– the problem is still there, you’ve helped isolate the problem

• You may use a binary chop to isolate the problem – divide the
problem space into half until you have found the smallest part with
the problem

• Check your solutions log to see if you’ve seen this problem before

PaD - 40The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 41The Pragmatic Programmers

Agile Collaboration
• Team and Team work critical for Agile

Development
• Your actions have consequences on the

team’s productivity and progress
• Everyone’s action must be relevant to the

context of the project
• Individuals actions, in turn, affect the

project context
• What can we do to be effective in the

team…

PaD - 42The Pragmatic Programmers

Schedule Regular Face Time

• Most of us may hate meetings
• But communication is key
• How do we know what everyone is doing?
• We don’t want an isolated developer fighting an irrelevant problem or a

problem with solution others on the team know
• Standup meetings help a great deal
• Very short meeting where developers share

– What did I achieve yesterday?
– What am I planning to do today?
– What’s in my way?

• Several advantages
– Kicks off the day
– Brings issues into the open
– Helps determine areas that need additional helping hands
– Keeps people abreast
– Speeds development by sharing code and ideas
– Encourages forward momentum, seeing others’ progress motivates each of us

You need to hold meetings—lots of them. In fact, we’re
going to keep scheduling more meetings until we discover
why no work is getting done.

PaD - 43The Pragmatic Programmers

Schedule Regular Face Time…

What It Feels Like
You look forward to the stand up meeting. You get a good

sense of what everyone else is working on, and can
bring problems out into the open easily.

Use standup meetings to keep the team on the same page.
Keep the meeting short, focused, and intense.

Keeping Your Balance
• Start meeting promptly
• Keep it short, focused, utilize time wisely
• For smaller teams, reduce frequency of meeting
• Keep a watch on level of details presented
• If you find this a waste of time, may be your not

operating as a team

PaD - 44The Pragmatic Programmers

Be a Mentor

• You may know more about certain things than anyone
else on your team

• What can you do with this new-found authority?
– Criticize others, make fun of their decisions and code, or
– Share what you know, making everyone around you better

• By taking time to explain you
– get better understanding of it yourself
– get a different perspective

• Being a Mentor, you don’t spoon feed people
• You help them learn
• Be a mentor, not a tormentor

It took you a long time and a lot of hard work to get where
you are. Keep it to yourself so you look better. Use your
superior skill to intimidate your teammates.

Knowledge grows
when given

PaD - 45The Pragmatic Programmers

Be a Mentor…

What It Feels Like
You find that teaching is another way to improve your

own learning, and others come to trust that you can
help them.

Make a conscious effort to be a mentor. There’s fun in sharing what you
know—you gain as you give. You motivate others to achieve better results.
You improve the competence of your team.

Keeping Your Balance
• If you teach same thing to different people, keep notes and write

an article or a book on the topic
• You are investing in yourself when you’re a mentor
• Pair programming can be effective way to mentor
• Don’t let lazy developers interrupt you - help them figure out

answers
• Don’t torment others, give them the answer if they’re really lost

PaD - 46The Pragmatic Programmers

Quiz Time

PaD - 47The Pragmatic Programmers

Practices of an Agile Developer
• Agile Software Development
• Devil and the details
• Select Practices
• Beginning Agility
• Feeding Agility
• Delivering What Users Want
• Agile Feedback
• Agile Debugging
• Agile Collaboration
• Epilogue

PaD - 48The Pragmatic Programmers

Succeeding on Projects
• We’ve discussed only a dozen practices

–45 Practices covered in the book

• One New Practice

• Not all at once

• Which practices should you use?

• Where do you go from here?

PaD - 49The Pragmatic Programmers

References…
• Venkat Subramaniam and Andy Hunt,

"Practices of an Agile Developer,"
The Pragmatic Programmers.

• Ken Schwaber, "Agile Project Management
with Scrum," Microsoft Press.

• Jared Richardson and Will Gwaltney,
"Ship It!," The Pragmatic Programmers.

• Johanna Rothman and Esther Derby,
"Behind Closed Doors: Secrets of Great
Management," The Pragmatic Programmers.

• Andy Hunt and Dave Thomas, "The
Pragmatic Programmer," Addison-Wesley.

• Peter Senge, "The Fifth Discipline: The
Art and Practice of the Learning
Organization," Currency/Doubleday.

