
DuraSoft 1

Java vs. .NET

by
Venkat Subramaniam

venkats@durasoftcorp.com

DuraSoft, Inc.
http://www.durasoftcorp.com/download

at
ACM Houston Chapter – April 2003

This presentation available for download at above URL

DuraSoft 2

Abstract
• The Microsoft .NET framework (and C#) is gaining usage and popularity.

Coming from the knowledge of Java (and C++), the speaker's first reaction,
like most people, was "Why another language similar to Java...?" This talk
compares Java with some of the features of C# and .NET. Similarities and
differences between the languages/platforms are presented. The speaker's
experience and opinion based on his work with Java for over 7 years and
with .NET for over 18 months will be presented. Insights into what is
important to focus for those interested in learning C# or .NET is also
provided. This talk assumes the audience is familiar with Java.

• Dr. Venkat Subramaniam, president and co-founder of DuraSoft, is a trainer and mentor of
software developers in the area of object- and web-based technologies. He is experienced in
developing large scale object-oriented applications for engineering companies. He is also an
adjunct professor in the Department of Computer Science at the University of Houston, where
he teaches and works with graduate students on their research projects. Venkat is the instructor
for the Professional Software Development Series at Rice Technology Education Center. Over
the past 10 years he has trained over 2500 software professionals in the Houston area and
around the world. He can be reached at venkats@durasoftcorp.com.

• Any page with a has an example attached

DuraSoft 3

Agenda
• Introduction

• Java Platform

• .NET Framework

• Technology Comparison

• Java vs. C#

• Servlet/JSP vs. ASP.NET

• EJB vs. .NET

• Summary

DuraSoft 4

Introduction
• Java

– Introduced in 1995
– Derives root from C++, Smalltalk, Objective-C
– Removed number of pitfalls of C++

• avoids surprises

– Popularity triggered by Web front end development
• sustained popularity for back end development

• .NET
– Introduced Feb. 2002 (betas introduced 1999-2001)
– Derives root from C++, VB, COM, COM+, MTS, Java!
– Removed number of pitfalls from interoperability between

languages & pitfalls of COM
• brings ease of GUI development to non-VB developers
• better server side programming model

DuraSoft 5

Java Platform

Sources:
http://java.sun.com/j2se/1.3/
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html

DuraSoft 6

.NET Framework

Source:
http://msdn.microsoft.com

C++ VB.NET

J#C#
IL

Microsoft
Intermediate

Language
(MSIL or IL)

DuraSoft 7

Technology Comparison

DuraSoft 8

Java vs. C#

• Is this Java or C#?

main in Java

public class HelloWorld
{

public static void Main(String[] args)
{

}
}

DuraSoft 9

Syntax Similar Yet Different
• Java

– C++, Smalltalk, Objective-C root
– Removes number of gotcha in C++
– Restrictive when it comes to

• pointers
• methods are virtual by default

– Positive: No way to hide a method and shoot in the foot like C++

• C#
– Tries to be a union of C++ and Java
– at times irritating in this regard

• Discussed later
• Use your judgment in using some of these features

DuraSoft 10

Syntax Similarity
publ i c c l ass Hel l oWor l d

{

publ i c st at i c voi d mai n((St r i ngSt r i ng[] [] ar gsar gs))

{

Syst em. out . pr i nt l n(“ Hel l o Wor l d! ”) ;

}

}

publ i c c l ass Hel l oWor l d

{

publ i c st at i c voi d Mai n((St r i ngSt r i ng[] [] ar gsar gs))

{

Consol e. Wr i t eLi ne(“ Hel l o Wor l d! ”) ;

}

}

Optional

Java

C#

DuraSoft 11

Syntax Differences

• Access Controls
– Java

• private, public, protected , (package friendly)

– C#
• private, public, internal, protected, protected internal

• Inheritance
– Java

• extends, implements

– C#
• : (for both one base class and interfaces)

DuraSoft 12

Syntax Differences Overriding

• Overriding
– Java

• final vs. non-final methods
• You may accidentally override methods

– Not really an issue most of the time!

– C#
• methods not marked as virtual can not be overridden
• Overriding method needs to be marked with override

– if you do not, it only gives you warning & assumes you are hiding
• You got to be kidding!

• Use the option to treat warnings as errors PLEASE

• You can mark a method as new with intent to hide
– I feel sick in my stomach

DuraSoft 13

Java vs. C# Some Differences

DuraSoft 14

Some More Differences
• Only in Java

– Checked Exceptions and throws clause
– Anonymous Inner classes (coming in future version of C#)

• Only in .NET
– Attributes
– Properties
– Indexer
– IDisposable
– foreach
– Delegate
– Code based security
– Pointer access - allows through “unsafe” construct
– operator overloading

DuraSoft 15

Checked Exceptions and throws
publ i c c l ass E1 ext ends Except i on { …}

…

publ i c voi d doSomet hi ng() t hr ows E1

{

i f (…)

t hr ow new E1(…) ;

…

}

}
…

t r y

{

obj . doSomet hi ng() ;

}

cat ch(E1 ex)

{
}

IDEs like Eclipse use this information
to automatically surround code with
try-catch block

DuraSoft 16

Checked Exceptions and throws…

• Java supports checked and unchecked
exceptions
– Checked exceptions must be caught using catch

• or the method itself should declare throws clause

– otherwise results in compilation error

• A method may not throw any exception unless
the method is marked with a throws of that
exception or its base

• Exception thrown by a method is part of its
interface

DuraSoft 17

Anonymous Inner Classes
…

component . addAct i onLi st ener (

new Act i onLi st ener ()

{

publ i c voi d act i onPer f or med(…)

{
…

}

}

) ;

DuraSoft 18

Attributes
• Defines characteristics on various subjects

– assemblies, classes, methods, properties, etc.

• Similar to the attributes in Microsoft IDL
• Appears within [] before the subject
[[Syst em. Ser i al i zabl eSyst em. Ser i al i zabl e]]

publ i c c l ass Sampl e {

[[Syst em. NonSer i al i zedSyst em. NonSer i al i zed]] pr i vat e i nt aFi el d1;

pr i vat e i nt aFi el d2;

[Syst em. Obsol et e(" Use i ncr ement i nst ead" , t r ue)][Syst em. Obsol et e(" Use i ncr ement i nst ead" , t r ue)]

publ i c voi d i nc() { …}

publ i c voi d i ncr ement () { aFi el d2++; }

DuraSoft 19

Properties
• An attribute or field represents some characteristics of

the object
• Making it public is undesirable

– uncontrolled access

• You may make them private and provide access
methods

• If intent is to access field, why not expose it as a
property
– intent is clear
– tools can help us identify properties
– change is very much controlled – still encapsulated!

• Compiler translates property p into get_p and set_p
methods! and provides an illusion to the user

DuraSoft 20

Writing Properties
publ i c c l ass Car {

pr i vat e i nt year Of Make;
pr i vat e st r i ng bodyCol or ;
publ i c Car () { …}
publ i c i nt year
{

get { r et ur n get { r et ur n year Of Makeyear Of Make; }; }
}
publ i c v i r t ual st r i ng col or
{

get { r et ur n bodyCol or ; }
set {

i f (val ue. Compar eTo(" Or ange") == 0)
t hr ow new Appl i cat i onExcept i on(…) ;

bodyCol orbodyCol or = = val ueval ue;;
}

}
}

Read-only property

Read/Write property

Well
Encapsulated

DuraSoft 21

Indexer
publ i c c l ass Vect or {

pr i vat e i nt [] val ues;
pr i vat e i nt s i ze;
publ i c Vect or (i nt r Si ze) { …}
publ i c v i r t ual i nt t hi s[i nt i ndex]
{

get
{

i f (i ndex >= s i ze)
t hr ow new I ndexOut Of RangeExcept i on(…) ;

r et ur n val ues[i ndex] ;
}
set
{ …

val ues[i ndex] = val ue;
}

}
}

Gives an illusion
of being indexed

Translates into
get_item and

set_item methods

DuraSoft 22

Problem with Finalize in Java
• Java has automatic Garbage collection

– No need to worry about memory cleanup
– Still resource cleanup is a concern

• Finalize called when Garbage Collector returns object to heap

• Garbage Collector may be lazy - Finalize will be called
sometime in the future

• If program exits fast - Finalized may never be called

Do not depend on the Finalize() method

DuraSoft 23

IDisposable
• .NET has a better handle on this
• Dispose the object by calling Dispose
publ i c c l ass Gar bage : : I Di sposabl eI Di sposabl e {

pr i vat e bool di sposed = f al se;
publ i c voi d Di spose() {

i f (di sposed == t r ue)
t hr ow new Obj ect Di sposedExcept i on(…) ;
di sposed = t r ue;
/ / What ever c l eanup
Consol e. Wr i t eLi ne(" Di spose cal l ed") ;
GC. Suppr essFi nal i ze(t hi sGC. Suppr essFi nal i ze(t hi s) ;) ;

}
~Gar bage() { Di spose() ;

Consol e. Wr i t eLi ne(" Fi nal i ze cal l ed") ;
}

}
usi ng (Gar bage obj = new Gar bage())

{

/ / code t o use obj
} / / obj . Di spose() cal l ed aut omat i cal l y her e!

DuraSoft 24

foreach

• Any object that implements the IEnumerable
can be traversed using a foreach

f or each(Dat aRow r ow i n t abl e. Rows)

{

i nt someFi el d = r ow[“ some_f i el d”] ;

/ / r ow her e r epr esent s each r ow i n

/ / t he col l ect i on i n t he r espect i ve

/ / i t er at i on t hr ough t he l oop
}

DuraSoft 25

void anotherHandler(int info)
{

…
}

Event Handling with Delegate

���������

SomeClient

void myHandler(int info)
{

…
}

Defines prototype for Defines prototype for
handler methodhandler method

DelegatesDelegates
ListList

DelegateDelegate

SomeClient

Register for
notification

Notice method
names not same

DuraSoft 26

Delegate
• Event handlers traditionally were global or static

functions
• In .NET, delegates allow a lot more
• Delegates are data structures (objects) that

hold
– either a pointer to global or static function
– or a pointer to an object’s method and the object

itself
– are object-oriented, type safe and secure

• All Delegates derive from the Delegate class

DuraSoft 27

Writing A Delegate
• Delegate classes are written with special syntax

• Compiler does special processing
– Writes a constructor and Invoke method when

compiled

• You can maintain a list of delegates by simply
adding and subtracting
– myDelegate += anotherDelegate;

// Adds the delegate
– myDelegate -= anotherDelegate;

// Removes the delegate

DuraSoft 28

Writing A Delegate…
publ i c del egat e voi d publ i c del egat e voi d St ockQuot eDel egat e(doubl eSt ockQuot eDel egat e(doubl e amount) ;amount) ;
publ i c c l ass St ockQuot e {

publ i c St ockQuot eDel egat e hi ghDel egat e = nul l ;
publ i c St ockQuot eDel egat e l owDel egat e = nul l ;

pr i vat e voi d newHi ghReached(doubl e amount)
{ / / one way t o i nvoke t he handl er s

Obj ect [] ar gs = new Obj ect [1] ;
ar gs[0] = amount ;
hi ghDel egat e. Dynami cI nvoke(ar gs) ;

}
pr i vat e voi d newLowReached(doubl e amount) {

/ / anot her way of achi evi ng t he same r esul t
l owDel egat e(amount) ;

}
}

DuraSoft 29

Using A Delegate
publ i c c l ass MyCl ass {
publ i c st at i c voi d hi ghRepor t (doubl e amt) { … }
publ i c st at i c voi d l owRepor t (doubl e amt) { … }
publ i c voi d beepRepor t (doubl e amt) { … } / / Non- st at i c
st at i c voi d Mai n(st r i ng[] ar gs) {

MyCl ass obj = new MyCl ass() ;
St ockQuot e st kQuot e = new St ockQuot e() ;
st kQuot e. hi ghDel egat e +=

new St ockQuot eDel egat e(User . hi ghRepor t) ;
st kQuot e. l owDel egat e +=

new St ockQuot eDel egat e(User . l owRepor t) ;
st kQuot e. hi ghDel egat e +=

new St ockQuot eDel egat e(obj . beepRepor t) ;
st kQuot e. l owDel egat e +=

new St ockQuot eDel egat e(obj . beepRepor t) ;
…
st kQuot e. hi ghDel egat e - =

new St ockQuot eDel egat e(obj . beepRepor t) ;
}

DuraSoft 30

Code Access Security
• Permission granted based on trust level
• Security Demand

– Your code (class library) demands that other
classes calling your methods or accessing objects
of your classes have a certain set of permissions
(specified by you)

– All the callers in the Call Stack are checked to see if
any of the callers lack the required permission

• SecurityException is thrown if that is the case

• Security Overrides
– allows you to override code permission explicitly
– you can further restrict your permission before

calling a third party code – a way to use other’s
untrustworthy code

DuraSoft 31

Code Access Security…
publ i c c l ass MyCl ass {

publ i c voi d f oo() {
Text Reader r eader =

new St r eamReader (" myf i l e. dat ") ;
…
r eader . Cl ose() ;

}
}

/ / Secur i t y demand may be speci f i ed usi ng at t r i but es
[Fi l eI OPer mi ssi on(Secur i t yAct i on. Demand, Unr est r i ct ed=t r ue)]
publ i c voi d f 2() { …}
publ i c voi d f 3() {
/ / Thi s met hod appl i es secur i t y over r i des.
/ / I t demands t hat t he code bei ng cal l ed does
/ / not access any f i l es.
Fi l eI OPer mi ssi on per m =

new Fi l eI OPer mi ssi on(
Per mi ssi onSt at e. Unr est r i c t ed) ;

per m. Deny() ;
MyCl ass obj = new MyCl ass() ;
obj . f oo() ;
Fi l eI OPer mi ssi on. Rever t Deny() ;

DuraSoft 32

Unsafe vs. Unmanaged Code
• Unmanaged Code:

– this is not executed under the tight supervision of
CLR

• no garbage collection
• limited debugging capabilities

– Useful to call Platform Specific functions

• Unsafe Code:
– this is managed code!
– it simply uses some constructs (like pointer usage)

that C# does not encourage

DuraSoft 33

Unsafe Code
• CLR manages memory
• Java does not allow pointer manipulation
• C# derived from C++, wants to allow it, however

with caution
• Code that manipulates pointers may lead to

memory leaks, etc.
• C# declares the section of code that

manipulates pointers as unsafe!
– your take care of memory management when within

this block of code – allows you to use pointers

• To prevent GC use the fixedfixed keyword to pin

DuraSoft 34

unsaf e publ i c st at i c voi d unsaf e publ i c st at i c voi d usePoi nt er s(i ntusePoi nt er s(i nt [] ar r ay)[] ar r ay)
{{

f i xed(i ntf i xed(i nt * * pt r Ar r aypt r Ar r ay = ar r ay) {= ar r ay) {
f or (f or (i nti nt i = 0; i < i = 0; i < ar r ay. Lengt har r ay. Lengt h; i ++); i ++)

Consol e. Wr i t eConsol e. Wr i t e(* ((* (pt r Ar r aypt r Ar r ay + i) + " ") ;+ i) + " ") ;
}}

}}
……
{{ Val TypeXVal TypeX i nst Of Xi nst Of X;;

Val TypeXVal TypeX[] [] myXAr r aymyXAr r ay = new Val TypeX[2] ;= new Val TypeX[2] ;
Ref TypeYRef TypeY obj Yobj Y = new = new Ref TypeYRef TypeY() ;() ;
……
unsaf e unsaf e
{{

Val TypeXVal TypeX* * pt r Xpt r X = &= &i nst Of Xi nst Of X;;
/ / No need t o use f i xed f or Val ue t ype (on t he st ack, r emember !)/ / No need t o use f i xed f or Val ue t ype (on t he st ack, r emember !)

Consol e. Wr i t eLi ne(pt r XConsol e. Wr i t eLi ne(pt r X-- >>valval) ;) ;
f i xed(Val TypeXf i xed(Val TypeX* pt r X2 = * pt r X2 = myXAr r aymyXAr r ay) {) {

Consol e. Wr i t eLi ne(pt r X2Consol e. Wr i t eLi ne(pt r X2-- >>valval) ;) ;
}}
f i xed(i ntf i xed(i nt * * pValpVal = &= &obj Y. valobj Y. val) {) {

Consol e. Wr i t eLi neConsol e. Wr i t eLi ne(*(* pValpVal) ;) ;
}}
……

Usage of unsafe

DuraSoft 35

Operator Overloading
• C++ has operator overloading

– one can debate if this is a feature or a flaw

• Java smartly avoided this for good reasons
• It is disappointing to see that C# took this up!
• Note operator overloading is not supported

across .NET languages
– If you want your code to be CLI compliant, you must

provide a regular method for each overloaded one

• C# has gone overboard with overloading
– May overload true, false, &&, || (gets pretty messy)
– This is surely a feature to be avoided

DuraSoft 36

Servlet/JSP vs. ASP.NET
• Servlet JSP has come a long way

– Model 1 architecture mixed presentation layer with business
logic – not maintainable

– Model 2 applies MVC and is elegant
– Struts framework makes it easy to achieve this

• ASP.NET has come a long way
– Far superior than ASP – an understatement
– code behind page brings the best of both worlds

Model

Servlet
JSP

Model

aspx.cs
(code behind) aspx

DuraSoft 37

EJB vs. .NET

• Specification vs. Implementation
– EJB is a specification
– .NET is an implementation

• though parts of it open (C# and CLI – ECMA standard!)

• Multiple vendors implement the EJB spec
– WebLogic, WebSphere, JBoss, to name a few

• Microsoft only vendor (predominantly)
– though efforts underway to implement on other

platforms by other vendors

DuraSoft 38

AppServers and Enterprise Services

• EJB specification implemented by different
vendors

• .NET provides similar functionalities (not all)
through its Enterprise Services
– Under the hood it interacts with COM+ (the second

generation of MTS) [not COM]

• EJB relies on deployment descriptors to
communicate intent on transactions, etc.

• .NET relies on Meta data for that

DuraSoft 39

Stateless Beans vs. Object Pooling
• EJB: The most favored Bean

– provides the best performance and scalability
– Control classes in OO Modeling maps to these
– may access the database using JDBC, etc.
– Need to use deployment descriptors to specify type

of bean

• .NET: Enterprise Services provides Object
Pooling and Just-in-time Activation
– Attributes used to build meta data to specify these
– Unlike MTS, no separate deployment required.

Automatic deployment when accessed.
– Essentially behaves as (Managed) COM+ Service

DuraSoft 40

Stateful Bean vs. ?

• EJB: Stateful session Beans
– useful to interact with clients while carrying a

conversational state
– Not optimal from the scalability point of view
– Not as desirable as Stateless Beans

• .NET: Not directly supported.
– You can try to achieve the same goal through work

arounds

DuraSoft 41

Entity Beans vs. ?

• EJB: Entity Beans
– Substantial support for managing persistence
– Two ways to manage persistance: CMPs and BMPs
– Least favored Beans in EJB however
– Suffers from poor performance due to

comprehensive object life time management and
data access mechanism

• .NET: Did not even bother to go this route
– Some people look at this as deficiency.
– Some people look at this as efficiency

DuraSoft 42

Persistence Management
• EJB:

– Entity Beans are really cool if only they have better
performance

– People give up on Entity Beans and use JDBC from
session beans

– JDO is gaining popularity, however, requires third
party product support

– Other proprietary OR mappings

• .NET: No Object Wrapper on data
– Several improvements made to ADO.NET for data

access
– No effort to provide an object wrapped access

DuraSoft 43

Transaction Management
• EJB:

– Transaction boundaries and needs can be marked
– Required, RequiresNew, Supports, NotSupported, …
– Uses deployment descriptors however

• XML based descriptors are read by the container
– EJB Container manages this

• .NET:
– Transaction boundaries and needs can be marked
– Required, RequriesNew, Supports, NotSupported, …
– Uses TransactionAttribute (Meta data) to specify these

needs
• Enterprise Services meta data is ready by COM+ runtime

– COM+ manages these

DuraSoft 44

Messaging

• EJB:
– Relies on JMS for messaging
– JMS is a specification

• different vendors implement the MOMs

• .NET:
– Provides Queued Components
– Well integrated with MSMQ
– Not a specification, but a product

DuraSoft 45

Tools
• Command Line

– Java: Strong command line tools support
– .NET: Not as powerful

• IDE
– Java:

• Some what behind in capabilities for Java
• Leading projects Visual Age, JBuilder
• Eclipse (open source) is very promising

– Lacks some nice features present in Visual Studio .NET, however

– .NET
• Strong IDE Visual Studio .NET

– Enhances productivity
– Makes some difficult tasks almost effort less
– Exceptional support for development and debugging
– Lacks some nice features present in Eclipse, however

DuraSoft 46

Future Features

• Java
– generics

• good old Templates from C++!

• .NET
– generics
– anonymous inner classes (for event handlers)

DuraSoft 47

Summary
• Java

– Very elegant
– Superior model, cleaner, you clearly understand what’s

going on
– Hard to use for certain tasks/applications
– Not as good a support for GUI and IDE as .NET
– Very good server side support – JSP, Struts, EJB
– Multiple vendors (Pluses and minuses related to this)

• .NET
– Really cool
– Not very clear modeling when you develop

• You have to make an effort to keep your head clear

– Very easy to develop, high productivity, shorter time to
market

– One vendor (Minuses and Pluses related to this)

DuraSoft 48

Which one should you use?

• You decide which one is best for your
application and needs

• Use the one that you think will do the job well
for you

• Decide without any prejudice or emotions

• Enjoy the freedom to choose – Good luck �

