The Good, Bad and Ugly

of Java Generics

Venkat Subramaniam

venkats@agiledeveloper.com

http://www.agiledeveloper.com/download.aspx

hGile Developer

... Java Generics- 1

Abstract

Abstract Java introduced Generics in the 1.5 version (Java 5). What are the

capabilities of Generics? How do you use it? Are there some gotchas in
using it? In this example driven presentation, we will start at the basics of
generics and look at its capabilities. We will then look at some of the
under the hood details on generics implementation. We will then delve
into the details of some of the changes to Java libraries to accommodate
generics. Finally we will take a look at some restrictions and pitfalls that
we need to be familiar with when it comes to practical and prudent use of

generics.

About the Speaker Dr. Venkat Subramaniam, founder of

Agile Developer, Inc., has trained and mentored
thousands of software developers in the US, Canada
and Europe. He has significant experience in
architecture, design, and development of software
applications. Venkat helps his clients effectively apply
and succeed with agile practices on their software
projects, and speaks frequently at conferences.

He is also an adjunct faculty at the University of
Houston (where he received the 2004 CS department
teaching = excellence award) and teaches the
rofessional software developer series at Rice
niversity School of continuing studies.

Venkat has been a frequent speaker at No Fluff Just
Stuff Software Symposium since Summer 2002.

hGile Developer

B

Practices of an
A%ile
eveloper

Pt

NET
Gotchas .

ORELLY

... Java Generics- 2




The Good, Bad & Ugly
of Java Generics

e Need for Generics

e Generics in Java

e Bounded Parameters

e Wildcard

e Restrictions

e Generics Implementation
e Effect of Erasure

e Java libraries changes

e Conclusion

Agile Developer ... Java Generics - 3

Generics
e Remember the good old Templates in
C++7?
e Java went the route of using Object as
generic type

- Problem is when you pull some thing out of a
collection, how do you call methods on it?

- Only after casting it to the correct type right
— Much worst if you are dealing with primitive
types
e These have to be boxed and unboxed
e Having collections that are type safe will
eliminate this issue

- Back to what C++ originally provided ©
Agile Developer ... Java Generics - 4




Need?!

e This is highly debatable

e First question is do we really need a type
safe language
- What about dynamically typed languages

e If we used dynamically typed languages,
then we do not really care about
generics!

e But then, we are talking about Java here

e So, how do we solve the issues with such
a strongly typed language

Agile Developer ... Java Generics - 5

The Good, Bad & Ugly
of Java Generics

e Need for Generics

e Generics in Java

e Bounded Parameters

e Wildcard

e Restrictions

e Generics Implementation
e Effect of Erasure

e Java libraries changes

e Conclusion

Agile Developer ... Java Generics - 6




Generics Type Safety
e Started as an experimental language - GJ
- http://homepages.inf.ed.ac.uk/wadler/gj
— Their slogan:
“Making Java easier to type and easier to type”

e Java 1.5 (Java 5) provides support for Generics
- I didn’t say JVM supports Generics ®

e Collections have been parameterized

e Simply create an instance of a Generic
Collection class and use it like you would any
other class
- ArraylList<Integer> Ist =

new ArraylList<Integer>(); ...
for(Integer val : Ist)
{ total += val; }
Agile Developer ... Java Generics - 7

Naming Convention

e Use single letter variables for types

- Assuming you follow good coding practice,
this will eliminate any confusion with your
real classes ©

e Use E for collection Elements

e T or other upper case single letters for
general types

Agile Developer ... Java Generics - 8




Generics Classes

e There is no instantiation of a class for
each Generics parameter

e \Vector<Integer> and Vector<Double>
use the same class under the hood

e What is the consequence of this?

e Don’t be fooled by static variables

—you are not really dealing with different types
under the hood

Agile Developer ... Java Generics - 9

Liskov’s Substitution Principle
Honored

e ArrayList<Base> Ist
= new ArrayList<Derived>();
//ERROR

e Collection of derived is-not a collection of
base

e That is good, but why?
e If allowed, you may do the following

e [st.add(new Base()); into the
ArrayList<Derived>
Agile Developer ... Java Generics - 10




Generic Methods

e Methods may be parameterized as well

e Useful to express dependency among different
parameters and the return type as well

e Use caution when mixing types, however

e Bends over back to accommodate to least
common type, if possible

public static <T> void filter(
Collection<T> in, Collection<T> out)

What if you send non-generic ArrayList as first
argument?

Agile Developer ... Java Generics - 11

The Good, Bad & Ugly
of Java Generics

e Need for Generics

e Generics in Java

e Bounded Parameters
e Wildcard

e Restrictions

e Generics Implementation
e Effect of Erasure

e Java libraries changes

e Conclusion

Agile Developer ... Java Generics - 12




Unbounded Type Parameters

e If you write a Generic like MyClass<T>,
there is no restriction on what type
argument may be used to instantiate it

e Well, almost. Java Generics do not allow
instantiation with primitive types
- Vector<int> is not allowed
- We will learn why? later

e What if you want to expect a specific
method to be available on the type?

-You can constraint or bound the type your
generic will accept

Agile Developer ... Java Generics - 13

Constraints on Generics

e As an author of a Generic type, you can
place restrictions on its usage

e For instance, you can ask the type to be
of certain class or its sub class, or its
super class.

e This is done using upper bound or lower
bound constraint

public static <T extends Comparable>
T max(T obj1, T obj2)

Agile Developer ... Java Generics - 14




Types of Constraints
e Upper bound
- T extends TypeName

— Expects the type specified to instantiate
Generics is of given type name or its sub
class

e Lower bound
- ? super TypeName
— Expects the type specified to instantiate
Generics is of given type name or its super
class copy(listOfDerived, listOfBase);
e Multi-bound
- T extends ClassTypeNamel

& InterfaceType2 & InterfaceType3
Agile Developer ... Java Generics - 15

The Good, Bad & Ugly
of Java Generics

e Need for Generics

e Generics in Java

e Bounded Parameters

e Wildcard

e Restrictions

e Generics Implementation
e Effect of Erasure

e Java libraries changes

e Conclusion

Agile Developer ... Java Generics - 16




Treating different Generics

e Each Generic type is separated from each
other by the compiler

e What if you want to write a common
method to work with different
instantiation of a Generic class?

e For example, you want a method to use
either a Vector<Integer> or a
Vector<Double>

—This is where a wildcard comes in
Agile Developer ... Java Generics - 17

Wildcard
e Wildcard (?) gives you the capability to specify
an unknown type
e This is a double edge sword

e It can help you treat different Generics
instantiation as one

- but may also lead to type safety issues

e One restriction - you can’t write into a
collection

abstract class Animal {
public void playWith(
Collection<Animal> playGroup) ...
How to allow aDog.playWith(dogs); ???

but avoid aDog.playWith(books); ???
Agile Developer ... Java Generics - 18




Wildcard capture
e You are not allowed to assign a unknown
type to a specific type
e However, there are times when this may
be useful

e Compiler makes an exception in these
cases

e Wildcard capture allows compiler to infer
the unknown type of a wildcard as a type
argument to a generic method

public static <T extends Comparable>
void print(Collection<T> coll)

...calling print with Collection<?>
Agile Developer ... Java Generics - 19

Unchecked Warning
e This warning says that the compiler is not

able to verify type safety

e Typically you would see this when you
mix generic with non-generic code

- Mixing Generics and non-generics code is
dangerous

e Pay close attention to these warnings
e Best to treat warnings as errors

- Better safe than sorry
Assighing generic to non-generic

Assighing non-generic to generic
Agile Developer ... Java Generics - 20




The Good, Bad & Ugly
of Java Generics

e Need for Generics

e Generics in Java

e Bounded Parameters

e Wildcard

e Restrictions

e Generics Implementation
e Effect of Erasure

e Java libraries changes

e Conclusion

Agile Developer ... Java Generics - 21

Restrictions

e Array of collection of generics not allowed
e Array of collection of wildcard is allowed, but unsafe

e Can't use generic of primitive types

e Parameterized types not allowed for
- static fields
- static methods with type parameters

e Within a generics code you can’t instantiate objects of
that type using new as in new T[100]; or new T();
- Why?
- Let’s understand how Generics are implemented to see why this
restriction exists

Agile Developer ... Java Generics - 22




Restrictions...

e Exceptions can’t be generic (though you
may throw generic exceptions)

e You can't inherit from a Parametric type
though you may inherit from a Generic

type

e You can't inherit from two instantiations
of the same generic type

Agile Developer ... Java Generics - 23

The Good, Bad & Ugly
of Java Generics

e Need for Generics

e Generics in Java

e Bounded Parameters

e Wildcard

e Restrictions

e Generics Implementation
e Effect of Erasure

e Java libraries changes

e Conclusion

Agile Developer ... Java Generics - 24




Implementation
e Generics are Java features

e No change to JVM was made for this

- Advantage: Format of class file (byte code) not
affected

— Disadvantage: Not really that type safe!
e What does that mean?

e Why do we care?
- Let’s answer this first
- Other languages are (slowly) coming to JVM
- Groovy, for instance

- But, of course, Groovy is a dynamic language, so it
should not be an issue

- What if we bring another type safe language to JVM?

- Second, the type safety is only at the compiler level
¢ Allows you to shoot yourself in the foot at runtime

Agile Developer ... Java Generics - 25

type erasure
e \Very fancy name

- translated to English: Generics are Macros
e Generics information is present only at

compile time

- Compile and its forgotten! (erased that is)

— Positive: No code bloat

- Negative: Only compile time type safety

e What is erasure?

- The generic type is replaced by a non-generic
type during compilation time
- Mostly with Object, but could be something

else

Lacks type safety when treated as non-generic
Agile Developer ... Java Generics - 26




type erasure...

e According to Java doc: “The main advantage of
this approach is that it provides total
interoperability between generic code and
legacy code that uses non-parameterized types
(which are technically known as raw types).
The main disadvantages are that parameter
type information is not available at run time,
and that automatically generated casts may fail
when interoperating with ill-behaved legacy
code. There is, however, a way to achieve
guaranteed run-time type safety for generic
collections even when interoperating with ill-
behaved legacy code.”

Agile Developer ... Java Generics - 27

Collections Wrapper Classes

e Collections outfitted with checked
collection Wrapper classes

e These will make sure you are sending
proper type

Collections.checkedCollection(col,
Integer.class)

e Returns a Collection that will immediately
throw an exception if a wrong type is
added

Agile Developer ... Java Generics - 28




The Good, Bad & Ugly
of Java Generics

e Need for Generics

e Generics in Java

e Bounded Parameters

e Wildcard

e Restrictions

e Generics Implementation
o Effect of Erasure

e Java libraries changes

e Conclusion

Agile Developer ... Java Generics - 29

Effect of erasure
What is the type in the bytecode for:

class MyList<T>

- Object

class MyList<T extends Vehicle>

- Vehicle

class MyList<T extends Comparable>

— Comparable

class MyList<T extends Object & Comparable>
- Object

— This is one reason to use Multi-bound constraints

Use javap — to see what erasure actually did

Agile Developer ... Java Generics - 30




Effect of Erasure

e Pre-erasure
ArrayList<Integer> Ist
= new ArrayList<Integer>();

Ist.add(new Integer(1));
Integer val = Ist.get(0);

e Erasure says
ArraylList Ist = new ArrayList();
Ist.add(new Integer(1));
Integer val = (Integer) Ist.get(0);

Agile Developer ... Java Generics - 31

Type comparison?
List Ist = new ArrayList<Integer>();
Ist instance of List
- true
Ist instanceof ArrayList
- true
Ist instance of ArrayList<Integer>
— Compilation Error
Ist instanceof ArrayList<Double>
— Compilation Error
new ArrayList<Integer().getClass() == new
ArrayList<Double>.getClass()

- true
Agile Developer ... Java Generics - 32




Type safety or lack of it

e ArraylList<Integer> alLst =
new ArraylList<Integer>();
List Ist = alLst;
e aLst.add(new Double()); // ERROR

e [st.add(new Double()); // Oops!

Agile Developer ... Java Generics - 33

Converting to Generics

e What if you want to convert legacy code
to Generics

e Make sure the code after erasure is
equivalent to non-generics

e Merely placing a <T> is not enough!

Agile Developer ... Java Generics - 34




The Good, Bad & Ugly
of Java Generics

e Need for Generics

e Generics in Java

e Bounded Parameters

e Wildcard

e Restrictions

e Generics Implementation
e Effect of Erasure

e Java libraries changes
e Conclusion

Agile Developer ... Java Generics - 35

Java Libraries Changes

e Java libraries have been changed to
accommodate Generics

e Collections

e Reflection
—java.lang.ref.WeakReference

e Lang
—java.lang.ThreadlLocal
—java.lang.Class

Agile Developer ... Java Generics - 36




8.

9.

Quiz Time n

. Generics are essential and it is high time they were introduced i va
false
. A c(ljass is "written" in bytecode for each type of parameter when you con#pile your
code
No | S

. To create an object of the parameterized type T, you simply write new T();

No

. How can you create an object of parameterized type, then?

Pass a Class instance and use newInstance method

. How do you specify that the type must implement Cloneable interface.

T extends Cloneable

. Is MyList<T> extends T valid?
Nope
. Is MyList2<T> extends MyListl <Integer> valid?
Yes
The technique of replaces parameterized type with a type during compilation
erasure

Mention at least two problems with Generics in Java
Dangerous to mix generics & non-generics, lacks runtime type-safety

10. Should you still have to learn and use Generics?

You have no choice. It is being used in library and by others

Agile Developer ... Java Generics - 37

The Good, Bad & Ugly
of Java Generics

Need for Generics
Generics in Java
Bounded Parameters
Wildcard

Restrictions

Generics Implementation
Effect of Erasure

Java libraries changes
Conclusion

Agile Developer ... Java Generics - 38




Conclusion
e Good

— Generics provide
e improved type safety
e better readability
- Simpler to use
- Nice job on bounded types

e Bad
- Mixing Generic code with non-generic code is dangerous
- Strongly advice to treat warnings as errors
- Primitive types can't be used as parameters
- No parameterized static variables

e Ugly
— Still runtime overhead due to casting (remember erasure)

- You can't rely on parameterized types when using
reflection/meta programming

- Erasure can lead to quite a bit of confusion

Agile Developer ... Java Generics - 39

References
1. http://java.sun.com/j2se/1.5.0/download.jsp

2. JSR 14 http://jcp.org/en/jsr/detail?id=14
3. GJ http://homepages.inf.ed.ac.uk/wadler/gj

4. Examples, slides are for your download

at http://www.agiledeveloper.com/download.aspx

Agile Developer ... Java Generics - 40




