
Agile Software Development - 1

Venkat Subramaniam

venkats@agiledeveloper.com

http://www.agiledeveloper.com/download.aspx

Agile Software Development

Agile Software Development - 2

Abstract
Abstract What is Agile software development? How should you change the way

you develop your software? How do you plan? What about iterative development?
What are some of the better practices that give results? In this session, the
speaker will present various approaches that lead to a successful development.
Tools that aid towards this goal will be highlighted as well.

We will discuss about project and iteration planning, test driven development,
continuous integration and other practices that will help you realize agility on your
projects.

About the Speaker Dr. Venkat Subramaniam, founder of
Agile Developer, Inc., has trained and mentored
thousands of software developers in the US, Canada
and Europe. He has significant experience in
architecture, design, and development of software
applications. Venkat helps his clients effectively apply
and succeed with agile practices on their software
projects, and speaks frequently at conferences.
He is also an adjunct faculty at the University of
Houston (where he received the 2004 CS department
teaching excellence award) and teaches the
professional software developer series at Rice
University School of continuing studies.
Venkat has been a frequent speaker at No Fluff Just
Stuff Software Symposium since Summer 2002.

Agile Software Development - 3

Agile Software Development

• State of Software Development

• Agility

• Planning

• Daily Activity

• Conclusion

Agile Software Development - 4

Evolution of Fields
• Bridge Construction

• Medicine

• Airplanes

• Software Development

Agile Software Development - 5

Bridge Construction
• Early Wood, Stone
• Then Iron, Steel
• Concrete Bridges
• Constructing a bridge is different from

innovating a bridge (with new material
for instance) for the first time

• Engineers use well established metrics to
design bridges – they do not innovate at
this stage

Agile Software Development - 6

Medicine
• “Health was thought to be restored

by purging, starving, vomiting or
bloodletting”
– Both surgeons and barbers were

specializing in this bloody practice
– Widely practiced in 18th and 19th

century
– Declared quackery by 1900

• Infection control
– If patent survived surgery, he most

likely died out of infection
– Germ theory and sterility came only

in late 1800s (Lister)
– Current rate of infection < 2.5%

Agile Software Development - 7

Airplanes
• 400 BC Chinese fly kite

aspiring humans to fly
• For centuries, we tried to fly

like birds… disastrous
• Steam powered, hot air
• Gliders, single man
• Engine powered
• 1903 Wright brothers’ first

flight – 12 seconds, 120 feet,
10 feet altitude

Agile Software Development - 8

Software Development
• Relatively nascent field in comparison

• Machines are getting faster or more
powerful

• Are we getting better in delivering
software applications though

Agile Software Development - 9

Success (or lack there of)
• How successful are we in developing

software?

• Less than 10% of software projects
succeed1

• Criteria for success?: On time, within
budget, feature complete, works (failure
free)

• Why is it so hard to get this right?

Agile Software Development - 10

What’s Software Development?
• Is it

–Mathematics?
– Logic?
–Engineering?
–Art?

• Combination of all of that2

Agile Software Development - 11

Software Engineering?
• What’s Engineering?2, 3

– “the application of science and mathematics by which the
properties of matter and the sources of energy in nature are
made useful to people”

– “the design and manufacture of complex products <software
engineering>”

• If software engineering like manufacturing or designing
a manufacturing plant?
– Is it like making another cell phone or making of cell phones

(took 37 years for commercialization)?

• Manufacturing is predictive
– You can measure and control quality, quantity

• Designing a manufacturing plant is creative/innovative
• Most software development is innovative process rather

than predictive manufacturing
– Requires great deal of innovation, interaction/communication

Agile Software Development - 12

Why is it hard to communicate?
• Why not simply write good documents to

describe requirements and hand them off
to developers to create software?

• We have tried that, but we know it does
not work

• 3 factors influence
–What you are communicating
–Who is communicating
–With whom

Agile Software Development - 13

• A Picture
is worth a
thousand
words

• From
Stephen
Covey’s “7
Habits of
Highly
Effective
People”

Agile Software Development - 14

?

?

Agile Software Development - 15

Realizing what makes it hard
• Documents can’t fully describe the

requirements
• 3 types of people make up your team

–Those with exceptional domain knowledge
but little software development expertise

–Those with exceptional software dev.
experience, but little domain knowledge

–Those with both domain and software
development skills

– (we will ignore that 4th category)
• Closer and frequent interaction is a

necessity

Agile Software Development - 16

What are our Goals?
• To minimize the risk in development

– Understand requirements better
– Be ready to change as requirements change

• To succeed in the development process
• To complete the project

– in budget
– on time

• If the project has to be cancelled, do so with
minimal damage

• Create a system that is
– easier to maintain
– less expensive to evolve

• Keep the bug count low

Agile Software Development - 17

Agile Software Development

• State of Software Development

• Agility

• Planning

• Daily Activity

• Conclusion

Agile Software Development - 18

Agility
• What’s Agility?
• Being agile
• What’s Agile?
• “marked by ready ability to move with quick

easy grace”
• “having a quick resourceful and adaptable

character”
• What does that mean?

– Process has to be lightweight and sufficient
– Lightweight helps us adapt and move
– Sufficient recognizes our ineffectiveness to be

complete and relies on strong communication

Agile Software Development - 19

Process
• Waterfall approach4

–Actually specified iteration - largely ignored

• Customers’ mind is not frozen after they
give us the requirements

• We are not able to fully understand what
is said

• Show me a long project duration, I will
show you a project that is already
doomed

Agile Software Development - 20

Iterative and Incremental
• How to foster

innovation and
communication?

• Isolation does not
help

• Interaction is key
–among developers

and with
customers

• But will that not
take more time?

Agile Software Development - 21

The time/scheduling hypocrisy
• What can you tell me about the next

project, you ask?
– It is due on November 1st tells your manager

• We hold deadlines too dearly
• Of course, time to market is critical

• But what generally happens on projects
when you hit that deadline?

Agile Software Development - 22

Pick Two
• Ask your customers to pick two out of the

following, you decide the third:

• Time
• Scope
• Quality

• Reality often ignored in project planning

Agile Software Development - 23

What about extensibility?

• Your system should be able to change
with least cost

• You should anticipate change?
• Does it mean that you build for what you

think may be needed?

• It depends

• Here are questions to ask

Agile Software Development - 24

Cost of the new feature
• What are the chances you will need to add new

feature?5

• How much does it take now to provide it?
• What is the worth of that feature to customer?
• How much will it cost to provide it in the

future?

• If it will cost almost the same in the future, and
you are not certain of the feature’s worth, it
may be better to wait
– If the features are important, we can implement it

later
– If it is not needed, we did not implement it

Agile Software Development - 25

So Should I not worry about
extensibility?

• You should!
• However, there are ways to address it

• Check on your ability to anticipate the
need and change

• Check on your ability to build the system
so the change in the future is incremental

• Refactor the system as it evolves

Agile Software Development - 26

Control Variables
• Cost

– Too little, does not solve problems
– Too much, some times more of a problem

• Time
– More time can improve quality and increase scope
– Too much time hurts as well

• Feedback from system during development is imperative

• Quality
– Sacrificing this may result in short term gains
– Over the long haul, lost is enormous

• Scope
– Lesser the scope, better the quality
– You can deliver sooner as well
– Assuming it meets the business needs

Agile Software Development - 27

Set of Values
• Communication

– Need to communicate critical change in req., design, etc.
– Put in place practices that will enhance communication

• Simplicity
– Find simplest thing that will work
– Build some thing simple today and pay a little to change

tomorrow than build some thing complicated today that may
never be used

• Feedback
– Unit tests provide feedback
– Corrected in minutes and days, not weeks
– A system that stays out of the hands of users is trouble waiting

to happen

• Courage
– Do not hesitate to throw code away if you find a better simpler

way
– Do not hesitate to call attention to problems if they are

significant and will benefit from reworking

Agile Software Development - 28

Being Agile without going overboard

• How to move towards agility?

• Some practices that have strong impact
–Planning

• Shorter iteration cycle/ planning

–Daily Activity
• standup meetings
• Unit Testing
• Refactoring
• Continuous integration

Agile Software Development - 29

Agile Software Development

• State of Software Development

• Agility

• Planning

• Daily Activity

• Conclusion

Agile Software Development - 30

“Plans are nothing. Planning is everything,”
Dwight D. Eisenhower

Agile Software Development - 31

“No plan survives contact with the enemy,”
Helmuth von Moltke

Agile Software Development - 32

Planning
• It is more important to be successful in a

project than staying with a plan

• Agile Software Practices focus on
changing to suite the needs than sticking
with a plan that has been developed

Agile Software Development - 33

Development Process

time

User Stories

Significant
ones

Agile Software Development - 34

Estimation
• Accurate estimation is hard
• Estimation comes from6

– Experience
– Understanding the problem
– Comfort with technology
– Productivity

• Too big a story – harder it is to estimate
• May need to split it into more manageable

pieces
• Velocity is the rate at which stories are

implemented
• Spiking – Development of prototypes to get a

feel for the velocity of the team

Agile Software Development - 35

Release Planning

• Can’t choose more stories than allowed
by velocity
–Based on velocity that is not accurate in the

beginning

• As velocity is varied, this will vary as well

Business
Decision

Velocity

Business value
of a story

Priority of a
story

Selection of
Stories to be

done first

Agile Software Development - 36

Iteration Planning
• Typically two weeks long

–Personally I follow one week iteration

• Customer (and team) choose stories to
be implemented for that iteration
–based on velocity

Iteration

New Stories Code Deliverable
Demo/Discussions

Update Velocity

feedback

Enhancements
from last
iteration

Agile Software Development - 37

Iteration Planning…

• Build Product and demo

• Do not build “for” demo

• Iteration ends on specified date
–Even if some stories are not done

Agile Software Development - 38

Agile Software Development

• State of Software Development

• Agility

• Planning

• Daily Activity

• Conclusion

Agile Software Development - 39

Standup meetings
• What’s going on in your team?
• Do you waste a lot of time in meetings?
• Do you feel developers are isolated?

• Save time, help communicate – stand up
for the meeting7

–What did I do yesterday?
–What’s my plan for the day?
–What’s in my way?

Agile Software Development - 40

Tell, don’t wait to be asked
• You have promised a task end of this

week
• You announce in the demo meeting that

you have not completed it
• You have just invited your boss to

micromanage you

• Communicate the status when there is a
change – don’t wait to be asked

• Information Radiators – techniques for
keeping others informed8

Agile Software Development - 41

Why Unit Test?
• Your code works
• You find the need to evolve your design
• You modify your code, you read through it,

looks reasonable (and it compiled ☺), so you
check it in

• What happens next?
• May be nothing for a few days or a week
• Then you hear a boom
• You curiously lean over to find your colleague

in torn shirts, surrounded by smoke, uttering “I
check out your code and it blue up”

• If you code sucks, wouldn’t you want to hear
that from your computer than your colleague?

Agile Software Development - 42

Unit Testing Benefits
• Unit Testing is an act of design than an

act of verification6,9,10

• It helps provide instant feedback when
code is changed
–Substantially improves robustness of app

• Works as a great form of documentation

• Safety net when refactoring code

Agile Software Development - 43

Test on all platforms supported
• “It works on my machine!” isn’t good enough

• Do you promise to support multiple version of
VM, different versions of OS, etc. ?

• It is your responsibility to make sure your code
works on each

• But who has the time to test all that, we’re
already under pressure
– Continuous integration can help on this

Agile Software Development - 44

What is Refactoring?
• The Process of changing a software system in

such a way that it does not alter the external
behavior of the code yet improves its internal
structure11

• Why fix what’s not broken?
– A software module

• Should function its expected functionality
– It exists for this

• It must be affordable to change
– It will have to change over time, so it better be cost effective

• Must be easier to understand
– Developers unfamiliar with it must be able to read and

understand it

Agile Software Development - 45

Why refactor?
• Code that smells
• Code tends to rot over time
• If it is hard to understand, it will get hard

to maintain

• You owe it to others to keep the code
understandable and easier to maintain
–Avoid duplication15

Agile Software Development - 46

What is needed for Refactoring?

• “Before you start refactoring, check that
you have a solid suite of tests. These
tests must be self-checking”

Agile Software Development - 47

Continuous Integration
• What good are the test cases if they are not

run
• How often should we run them?
• Every night at least
• How about once every hour?
• Or better still when ever code change is

checked in12, 13

• When code is checked in the code is compiled
automatically and all tests cases are executed
– If a test fails the team is alerted
– When test fails, nothing else important/high priority

• Fix the code to make the test succeed
• Or modify the test to fit the changes if appropriate

Agile Software Development - 48

Setting up CI
• It takes a few hours to a day to set this

up
• Cruise Control, Ant Hill, Damage Control,

etc.14

• Benefit is enormous

• Figure out ways you can use this
–No limits to your creativity

Agile Software Development - 49

Quiz Time

Agile Software Development - 50

Conclusion
• We all want to write software successfully

• Only constant is change

• How to keep up with it?
– Communicate
– Iterate
– Unit Test
– refactor
– Integrate early and often

• Let’s succeed in development

Agile Software Development - 51

References
1. "Software Project Management Practices: Failure Versus Success," Capers Jones
(http://www.stsc.hill.af.mil/crosstalk/2004/10/0410Jones.html)
2. "Agile Software Development," Alister Cockburn, Addison-Wesley.
3. "Agile and Iterative Development: A Manager's Guide," Craig Larman, Addison-Wesley.
4. "Iterative and Incremental Development: A Brief History," Craig Larman, IEEE Computer,

June 2003.
5. "Planning Extreme Programming," Kent Beck, Martin Fowler, Addison-Wesley.
6. "Agile Software Development, Principles, Patterns, and Practices," by Robert C. Martin,

Prentice Hall.
7. "Agile Software Development with SCRUM," Ken Schwaber, Mike Beedle, Prentice Hall.
8. "Information Radiator," http://c2.com/cgi-bin/wiki?InformationRadiator.
9. "Test Driven Development: By Example," Kent Beck, Addison-Wesley.
10. "Pragmatic Unit Testing in Java with JUnit," Andy Hunt, Dave Thomas, Pragmatic

Programmers.
11. "Refactoring: Improving the Design of Existing Code," Martin Fowler,

Kent Beck, John Brant, William Opdyke, Don Roberts, Addison-Wesley.
12. "Continuous Integration," Martin Fowler, Matthew Foemmel,

http://www.martinfowler.com/articles/continuousIntegration.html.
13. "Pragmatic Project Automation: How to Build, Deploy, and Monitor Java Apps," Mike

Clark, Pragmatic Programmers.
14. "Continuous Integration Server Feature Matrix,"

http://docs.codehaus.org/display/DAMAGECONTROL/Continuous+Integration+Server+Fe
ature+Matrix.

15. "The Pragmatic Programmer: From Journeyman to Master," Andrew Hunt, David
Thomas, Addison-Wesley.

16. Some interesting articles to read - http://tinyurl.com/drnor

Agile Software Development - 52

Thanks!

Download Slides from

Please fill out your evaluations!

http://www.agiledeveloper.com/download.aspx

