

1

Scripting on the JVM – Part II
Venkat Subramaniam

venkats@agiledeveloper.com

Abstract
In Part I we looked at using jrunscript to call from JavaScript to Java. In this Part II we’ll

look at calling JavaScript from within Java. We will call into a script from Java, pass

parameters, and also get result back from the script.

Scripting API
If you like to call into one of the two dozen scripting languages from within Java, you can

use the Scripting API
1,2

. The scripting API provides a standard interface (as defined in

JSR 223) for Java applications to interact with scripting engines.

A script engine takes care of mapping calls from Java to the underlying methods in the

script you provide. Let’s start with an example.

Get ScriptEngine
To use the scripting engine, you interact with an instance of ScriptEngine . You can

obtain an instance of ScriptEngine from ScriptEngineManager . You can give it the

name of the languages you’re interested in or the file extension used in that language.

ScriptEngineManager scriptEngineManager =

new ScriptEngineManager();
ScriptEngine engine1 =

scriptEngineManager.getEngineByName("javascript");
System.out.println(engine1);

ScriptEngine engine2 = scriptEngineManager.getEngin eByExtension("js");
System.out.println(engine2);

The above code reports:
com.sun.script.javascript.RhinoScriptEngine@32fb4f
com.sun.script.javascript.RhinoScriptEngine@1113708

The Rhino Engine for JavaScript is already part of Java 6. If you’re using Java 6 and

want to use JavaScript you don’t need anything more. If you’re using Java 5 or want to

use other languages with Java 6, you need to download JSR 223 Engine.

Call JavaScript
To call JavaScript, you can use the ScriptEngine to evaluate your script. In the

example below, I will hard code the script. However, in a real application I may get the

script from a file or some form of input at runtime.

ScriptEngineManager scriptEngineManager = new Scrip tEngineManager();
ScriptEngine engine =
 scriptEngineManager.getEngineByName("javascript") ;

2

try
{
 engine.eval("println('Hello from JavaScript');");
}
catch (ScriptException e)
{
 System.out.println(e);
}

The output from the above code is:

Hello from JavaScript

Bindings
If you want to pass some data to the script, you can do that easily using the Bindings.

You can create any number of Bindings you like or you can use the one attached to the

engine already. Let’s explore this further.

engine.put("name", "Bill");
engine.eval("println('Hello ' + name + ' from JavaS cript');");

engine.put("name", "Vivek");
engine.eval("println('Hello ' + name + ' from JavaS cript');");

The output from the above code is

Hello Bill from JavaScript
Hello Vivek from JavaScript

You can also create separate bindings and use them for different evaluations.

Bindings bindings1 = engine.createBindings();
bindings1.put("name", "Bill");

Bindings bindings2 = engine.createBindings();
bindings2.put("name", "Vivek");

engine.eval("println('Hello ' + name);", bindings1) ;
engine.eval("println('Hello ' + name);", bindings2) ;
engine.eval("println('Hello ' + name);", bindings1) ;

The output from the above code is:

Hello Bill
Hello Vivek
Hello Bill

Return Objects
You can also receive the response from the script.

Bindings bindings1 = engine.createBindings();
bindings1.put("name", "Bill");

3

Object result = engine.eval("name + ' today is ' + new Date();",

bindings1);

System.out.println(result);

The output from the above code is shown below:

Bill today is Mon Dec 31 2007 04:43:11 GMT-0700 (MS T)

Conclusion
In this Part-II we saw how to invoke JavaScript from within your Java code. We have

merely scratched the surface. We will look at invoking methods and functions in Part III.

References

1. http://jcp.org/en/jsr/detail?id=223

2. https://scripting.dev.java.net

