Servlets, JSP, Struts and MV C
(Part 1)

Venkat Subramaniam
venkats@agiledevel oper.com
http://www.agiledevel oper.com/downl oad.aspx

Abst r act

Servlets and JSPs bring significant advantage to web development, yet come with
significant limitations. In this article, we discuss what's fundamentally wrong with
servlets and JSPs, discuss the Model 1 and the MV C based Model 2 architecture, and
introduce the benefits of using a framework like Struts.

Let’'s start with Tonctat

Alright, | have Tomcat"™ (4.1.24) installed on my system. Let's write a JSP page for a
guessing game. | create a file named Guess.jsp in the Tomcat’ s webapps/GuessingGame
directory. We will see it working before looking at the code. | start the Tomcat web
server and visit the following URL.: http://local host:8080/GuessingGame/Guess.jsp. Here
isthe series of interaction with the application.

& | http:/flocalhost: B080/GuessingGame/Guess. jsp - Mic... E“E]@

File Edit View Fawvorites Tools Help .';"
- ~ 33

@ Back -] » ‘,: | P ! Search _'_H’ Fawarites

o 14 [; ; ; = ol >

Address |@ http: fflocalhost: 8080 /GuessingGame fGuess. jsp e Go Links

Guessing Game

Welcome to Guessing Game Number of attempts 1

Aim higher
Enter vour guess: 5’(]{ | Lt
v
Ei Done ‘J Local intranet

& | http://localhost:8080/GuessingGame/Guess. jsp - Mic... E”E]@
~

File Edit View Favorites Tools Help 5

= = S
@ Back ~ (o4 |£] |§| il P ! Search 7 7 Favorites
8 1 = N - & s il " 1 >
Address |@ http: fflocalhost: 8080 /GuessingGame, Guess.jsp | % | Go Links

-~

Guessing Game

Number of attempts 2
Aim higher

Enter your guess: IT"'5 |

é‘i Done %4 Local intranet

X http://localhost:8080/GuessingGame/Guess. jsp - Mic... E |E] @

Eile. Edit View Favoribes Tools Help ","
L ~ - - ZE
A= - b 1 =] i
Q Back > | o <) (nl | Search p i Favorites
Address |—EE http: {flocalhost: 8080 /GuessingGame [Guess. jsp | Go Links **

Guessing Game

Number of attempts 9
Congratulations! vou got it. Lets start a new game!

Enter vour guess: l _
b
&] Done %4 Local intranet

The guessing game allows me to guess a number. | started with 50 and it asked meto aim
higher. Then | tried 75, it asked me to aim lower. After nine attempts, | finally guessed it
to be 62 (now you know why | do not buy lotto).

Now, let’slook at the JSP code for this program.

<l-- Cuess.jsp -->
<Hl>Guessi ng Gane</ Hl>
<%

int attenpts = 1;
int target = 0;
int guess = -1;

if (session.isNew())

{
target = (int)(Mth.random() * 100);
out.println("Wlcone to Guessing Gane");
session.setAttribute("target”, "" + target);
session.setAttribute("attenpts”, "1");

}

el se

{
target = Integer. parselnt(

session.getAttribute("target").toString());
attenpts =
I nt eger. parsel nt (
session.getAttribute("attenpts").toString());

att enpt s++;
session.setAttribute("attenpts", "" + attenpts);
guess = I nteger. parsel nt(request. getParaneter("guess"));

}

%>

Nunber of attenpts <% attenpts %

<%

if (guess == target)
{
out.println(
"Congratul ations! you got it. Lets start a new gane!");

target = (int)(Mth.random() * 100);
session.setAttribute("target”, "" + target);
session.setAttribute("attenpts”, "1");

}
el se
{
if (guess < target)
out.println("A mhigher");
el se
out.printin("Aimlower");
}
%

<FORM action="http: Guess.jsp" nethod="POST" >
Enter your guess:
<I NPUT id="guesslnput" type="text" nane="guess"/>
<I NPUT type="subnit" val ue="Send"/>
</ FORW>
<SCRI PT>
docunent . al | . guessl nput . focus();
</ SCRI PT>

If it is a new session (new game) we create a target (that the user is going to guess) and
store it in the session aong with an initial value for number of attempts. If thisis not a
new session (i.e, it is a continuing game), then we fetch the target and number of
attempts from the session. We check to see if the user’s guessis equal to the target. If so,
we congratulate the user and reset the variables to start a new game. Otherwise, we
instruct the user to guess again.

Servliets to JSP — From bad to worse

Servlets are Java classes that implement the javax.serviet.Servlet interface. They are
compiled and deployed in the web server. The problem with servlets is that you embed
HTML in Java code. If you want to modify the cosmetic look of the page or you want to
modify the structure of the page, you have to change code. Generally speaking, thisis left
to the better hands (and brains) of a web page designer and not to a Java developer.
What' s nice about JSP is you are simply writing an HTML page, but then you can embed
Java code into it. Looking at the above example, no web page designer in the right mind
will volunteer to modify it. Thereistoo much Javacodeinit. Thisis a perfect example of
a bad JSP page!

Model 1 Architecture

Servlets are great for Java code. JSPs are great for HTML. Placing HTML into servlets or
placing Java code in JSP leads to a system that is very hard to maintain. This brings usto
the so called Model 1 architecture shown below:

JSP page(s)

Figure 1. Model | Architecture

In Model 1 architecture, a series of JSP pages (or servlets) do al the work. Each page
takes upon the complete task of fulfilling a request. There is no separation of concern.
This leads to code that is very hard to maintain. It takes some effort to keep the different
aspects of the code separated from each other.

MVC and Model [l Architecture

Most of us are familiar with or have heard of Model-View-Controller architecture (or
pattern). This fundamentally talks about separation of concern. Y ou want your system to
be layered. The Model deals with information and rules that are close to the information.
Control deds with the behavior and business logic around the use of the
model/information. View deals with the presentation logic. By separating these three, you
get a system that is more resilient to change. It improves extensibility. In the Unified
Software Development Process’, the analysis models use three stereo types: Boundary

Classes @ Control Classes O Entity Classes Q The Entity classes represent the
model, the boundary classes represent the presentation layer that interacts with the actor.
When it comes to web development (with Java), JSP isideato hold the presentation logic
(View). Servlets are ideal to hold the business logic (Control). Simple Java classes could
provide access to Information (Model) and some control as well. This leads to the so
called Model 11 Architecture as shown below.

Servlet
(Control) \
Java Objects
l (Model)
JSP
(View)

Figure 2. Model Il Architecture

In this architecture, the request from the browser is received by a servlet. The serviet
(which houses Java code) communicates with simple Java objects to access information

and takes care of processing. Once the request has been processed, the flow of control is
transferred to an appropriate JSP page. The JSP page, which will contain HTML for most
part and some limited JSP tags will then display the information by accessing the smple
Java objects and some session variables, if need be.

GQuessing Ganre with MWC
Let’s apply the above architecture to our simple Guessing game application. The servlets
and JSP involved and the interaction between them is shown below:

Guess
(Servlet)

forward

Start.jsp

2. Second and

ubsequent Requests
GuessAction

3. Final Request (Servlet)

Actor1

forward

ContinueGues

S forward
sing.jsp

GameOver jsp

Figure 3. Guessing Game with MV C applied

Before we start looking at the code, let ustake alook at this application under execution:

‘2 http://localhost:8080/GuessingGame/serviet/Guess - Mic... |ZJ|EJE|
b/

X

File Edit View Favorites Tools Help

o T e : \ e .
@ Back ~._-/II » | |’;ﬂ 1 :'] . Search H’.-.»-x':l Favorites
Rgdrgﬁ'-f@ http: flocalhost: 8080 /GuessingGame feerviet/Guess » Go Links >*

Guessing Game

Welcome to Guessing Game

Enter yvour guess: |50 | [LSE”':' J

%d | ocal intranet

IE Done

A http://localhost: B080/GuessingGame/serviet/GuessAction - ... E E]E|
File Edit \iew Favorites Tools Help -z."
= — e = 5
@ Back - '1__) |ﬂ @ _;] /'-_ | search \:'2? Favarites le‘rv‘lecﬁa
Agdr%—@ http:fﬂocalhu:ust:8I:IBU,-"GuessingGamEfseruIEt,."GuessAcﬁuW Go Linfes - ¥
| A
2 1
Guessing Game
MNumber of attempis 2
Aim lower!
| Enter vour guess: i25 | |.Send | ~i
‘lj Local intranet

@ Done

A http://localhost:8080/GuessingGame/serviet/GuessAction - ... [Z”E]["}__ﬂ
ZJ a

0

File Edit Wiew Fawvorites Tools Help

@Eack - »._.’) IE @ ;j fﬂ' Search ‘EIL..I’ Favorites eMecﬁa

A-:'I_drag@ http:/localhost; 8030,/GuessingGame fservlet/Guess Action ‘va Go Links

>

>

Guessing Game

Number of Attempts 8
Congratulations!
Would vou likce to start a new game?

[l

&

‘j Local intranet

E Done

This has got to be a better implementation because | was able to guess the number in
fewer tries! | would like to point to some thing important to note. From in the address
bar, you can see that the visits are going to one of two serviets (Guess and GuessAction)
and not to a JSP page. Ideally, a user should never have to visit a JSP page directly.
The request goes to the servlet directly. The servlet takes care of the actual processing of
the request and then transfers the control to an appropriate JSP page. The JSP page then
will display the response to the user. The subsequent request (after the user fills in the
form and clicks the submit button) is directed to a servlet again for processing. A user of
the system should not be aware of the existence of any JSP pages at all. Let’s take a
look at the actual code now.

We will first start with the “ Guess” servlet.
/1l Guess.java servlet

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport Quessing. | nfo;

public class Guess extends HttpServl et

{
public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, java.io.|OException
{
Ht t pSessi on session = request. get Session();
int target = (int)(Math.randon() * 100);
session.setAttribute("target”, "" + target);
session.setAttribute("info", new Info());
request . get Request Di spat cher ("/start.jsp").
forward(request, response);
public void doPost (Htt pServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, java.io.|OException
doGet (request, response);
}
}

The servlet first initializes the target, sets session variables and transfers control to the
start.jsp page. The class Guessing.Info is a simple bean that holds two properties attempts
and message as shown below:

/1 1nfo.java bean
package Guessi ng;

public class Info

{
private int attenpts = 1;

private String nessage = "";

public int getAttenpts() { return attenpts; }
public void setAttenpts(int value) { attenpts = val ue; }

public String get Message() { return nessage; }
public void set Message(String value) { nessage = value; }

}

The start.jsp (shown below) merely includes GuessRequest.htm.

<l-- start.,jsp -->
<Hl>Guessi ng Gane</ Hl>

Weél cone to CGuessi ng Gane</ B>

<%@i ncl ude fil e="CGuessRequest. htni %

The GuessRequest.htm contains the form for the user to fill in as shown below:
<l-- Q@uessRequest.htm-->

<FORM action="htt p: GuessActi on" net hod="POST" >

Enter your guess:

<I NPUT id="guesslnput" type="text" nane="guess"/>

<I NPUT type="subnit" val ue="Send"/>

</ FORM>

<SCRI PT>docunent . al | . guessl nput . focus() ; </ SCRI PT>

The reason for including GuessRequest.htm in the start.jsp page will become obvious
soon as you find that the same form is needed in another jsp page as well.

Note that the form (in GuessRequest.htm) directs the user to the servlet GuessAction. The
GuessAction servlet is shown below:

/1 GuessAction.java servl et

i mport javax.servlet.*;

i mport javax.servlet.http.*;
i mport Quessing. | nfo;

public class GuessAction extends HttpServl et
{
public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, java.io.|OException

int attenpts = 1;

int guess = -1;

int target = 0;

String forwardPage = "/ Conti nue@uessing.jsp";
String message = "Aim hi gher";

Ht t pSessi on sessi on = request. get Session();
target =
I nt eger. parsel nt (
session.getAttribute("target").toString());

Info info = (Info) session.getAttribute("info");
attenpts = info.getAttenpts();
att enpt s++;
i nfo.setAttenpts(attenpts);
guess = I nteger. parselnt(
request . get Par anet er (" guess"));

if (guess == target)

{
f orwar dPage = "/ GaneCQver. | sp";
message = "Congratul ations!";
}
el se
{
if (guess < target)
nmessage = "Aim higher!";
el se
message = "Aim |l ower!";
}

i nf 0. set Message(nessage) ;
r equest . get Request Di spat cher (f or war dPage) .
forward(request, response);

}

public void doPost (Htt pServl et Request request,
Ht t pSer vl et Response response)
t hrows Servl et Exception, java.io.|OException

doGet (request, response);

}

The GuessAction servlet checks if the user’s guess is correct. If the guess is lower (or
higher) than the target, it sets a message (in the info bean which resides in the session) to
“Aim higher” (or “Aim lower”). Then the control is transferred to the
ContinueGuessing.jsp. If the user’'s guess is correct, then the control is transferred to the
GameOver.jsp.

The two jsp pages are shown below:

<l-- ContinueCuessing.jsp -->

<Hl>Guessi ng Gane</ Hl1>

<j sp:useBean id="info" scope="session" class="CGuessing.Info" />
Nunber of attenpts

<j sp: getProperty name="info" property="attenpts"/>

<j sp: get Property nanme="i nfo" property="nessage"/>

<%@i ncl ude fil e="CGuessRequest. htni %

<l-- GnmelOver.jsp -->

<Hl1>Guessi ng Gane</ Hl>

<j sp:useBean id="info" scope="session" class="CGuessing.Info" />
Nunber of Attenpts

<j sp:getProperty name="info" property="attenpts"/>

<j sp:getProperty name="info" property="nessage"/>

Wuld you like to start a new gane?

<FORM act i on="Guess" met hod="POST" >

<I NPUT type="submt" val ue="Yes"/>

<I NPUT type="submt" val ue="No" onclick="w ndow. cl ose()"/>
</ FORW>

From the JSP pages we can see that there is no java code in them. It uses regular HTML
and the JSP tag libraries. Any web designer (by which | mean one who is not a Java
programmer) will be able to maintain it. They can modify it, change the fonts, add
pictures and change the esthetics of the page to their hearts content. Notice also that the
servlets do not have any HTML in them. Java programmers (by which | mean one who is
not interested or capable in the esthetics of the presentation) can modify the code, access
any database, create as much or as little Java code to their hearts content as well. This has
given a good separation of concern.

What' s the catch

If you are comfortable with the code organization shown above and the goa that is
realized from it, you pretty much know the fundamentals behind a framework like Struts.
While the above separation of concern has immense value, we could agree that it takes
some effort and a lot of discipline to keep it that way. A framework will help us in
several ways. It could guide us towards better organization of the code. It can remove the
tedium of developing the code. Severa steps could be automated for us so we can focus
on delivering the core logic. In the next article, we will show how this can be
implemented using Struts.

Concl usi on

In this article we presented an example of a simple application which suffers from the
mixing of HTML and Java code (presentation and logic). We then showed how we
managed to achieve the separation of concerns and work towards an implementation that
follows the MV C architecture. In the next issue we will see how this can be implemented
more elegantly using Struts.

Ref er ences
1. http://jakarta.apache.org/tomcat/index.html.

2. The Unified Software Development Process, Jacobson, Booch, Rumbaugh,
Addison-Wesley.

