
Decorator Pattern by Example
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abst r act
In this article we present an example that illustrates the use of the Decorator pattern. The
objective is to illustrate the flexibility provided by this very elegant pattern. The example
is presented in Java; however any .NET developer must be able to grasp the concept from
it.

An Eval uat i on Appl i cat i on
Let’s consider a program where there are some rules that will be used in evaluating an
application submitted to a University. Say the Registrar object, in our program, is
responsible for carrying out the specific evaluation by using the rules. To start with say
we only have been given the GPAEval as the criteria to be applied.

So, here is one possible code we have for this:

The Registrar class is shown first:

The evaluate method does whatever it has to. In addition, it calls evaluate on the
GPAEval object. The GPAEval object encapsulates and isolates the evaluation based on
the GPA requirements.

The GPAEval object is shown below:

The Application class itself does not have a whole lot (and will not in this example) as
shown below:

Let’s look at a test code that will use all this:

Running this program produces the following result:

Let ’ s Ext end t hi s now
Now that we got this working, let’s say we are asked to, in some but not all cases,
evaluate GRE scores in addition to GPA scores. How can we realize this without
breaking the Registrar class?

One possibility is to derive from the GPAEval class as shown below:

The modified TestCode is shown below:

And the output is:

OCP Compl i ance
That’s great so far. We kept the code pretty much OCP1 compliant so far. We were able
to accommodate the change in requirements by adding new module of code and not
changing any existing code (not considering change to the TestCode, of course). Now,
say we are asked to evaluate the applicant based on TOEFL and GPA. How can we do

that? We can write another class TOEFLEval which inherits from GPAEval and that
should take care of it right?

Gr owi ng Pai n
What i f we ar e asked t o eval uat e an appl i cat i on on GPA, GRE and TOEFL
scor es? Agai n, not al l appl i cat i on may have t o be eval uat ed based on
al l t hese cr i t er i a. Onl y a f ew may need a combi nat i on of t hese
cr i t er i a. Goi ng down t he pat h we have t aken so f ar , shoul d we wr i t e
anot her c l ass t hat der i ves f r om bot h GREEval and TOEFLEval ? I hear you
sayi ng “ you can’ t do t hat i n Java (or . NET) . ” Shoul d I i nher i t t he
c l ass f r om GREEval and may be cont ai n TOEFLEval i n i t ? Then I can
del egat e t he cal l t o t he base t o eval uat e GRE and del egat e t he cal l t o
t he cont ai ned TOEFLEval obj ect t o eval uat e TOEFL scor es r i ght ?

Do we need t o cr eat e mor e cl asses?
The above approach while may appear to be OCP compliant, leads to class proliferation.
Instead of spending the time writing more classes, we can instead spend the time using
the objects of those classes. Let’s see how we can do that.

What ’ s Decor at or ?
Decorator2 is a pattern that shows us how to solve problems like this. Another way to
understand decorator is to understand chaining. The criteria objects can be chained to
achieve extensibility and agility (I have to use that word somewhere!).

Let’s say I wake up one morning of an important meeting and look in the mirror and say
“oh Venkat, you do not look good.” What should I do, should I find some one else

instead to go to the meeting? No. I may shower, wear a nice shirt and pant, may be wear a
tie, a tie pin, etc. Some one may decide to wear a makeup, ear rings, nose rings, tongue
rings, etc! In other words, we decorate the object with other objects. That is the kind of
idea we will follow here.

Decor at or i n Act i on
Let’s modify the classes and come up with a different hierarchy. We will first create an
abstract class named EvaluationCriteria as shown below:

We will modify the Registrar to use this class instead:

Now, the GPAEval is derived from EvaluationCriteria as shown below:

Here comes the trick. We will create a class called CriteriaLink as shown below:

What’s this class doing? It is an abstract class that maintains a link to the next
EvaluationCriteria, thus forming a linked list. When evaluate is called on it, it simply
forwards the request to the next object in the chain. It says, “what ever the other object
says, I will go with it.” (Like what I say when my wife is around!)

Now, let’s see how we would write the GREEval and TOEFLEval classes:

What have we done so far? Let’s visualize the code using the UML notation:

We have the Criteria link forming the chain. Such fundamental or leaf criteria like
GPAEval fall in the bottom of the chain. Those additional criteria like GREEval are in
the upper level of the chain. How would we use this now? Let’s look at the TestCode to
see that:

Notice how the criteria are being chained. If I want to say evaluate TOEFL, GRE and
GPA, I could write it as

GPAEval aGPAEval = new GPAEval();
GREEval aGREEval = new GREEval(aGPAEval);
EvaluationCriteria criteria = new TOEFLEval(aGREEval);
reg.evaluate(criteria);

or I may also write (at the expense of readability):

EvaluationCriteria criteria = new TOEFLEval(new GREEval(new GPAEval()));
reg.evaluate(criteria);

If I want some other combination of criteria, I can readily write that without worrying
about how to subclass one criteria from the other. The output of the program is shown
here:

Consequences of usi ng Decor at or
One argument I have heard from people against Decorator is that it may be slower. There
is no significant performance issue in terms of execution speed. Instead of calling the
method on the base class, you end up calling the method on the object next in the chain.
One significant difference is the number of objects you end up using. In the case of using
inheritance alone, you end up with one object (assuming multiple implementation
inheritance that is). In this case, you have objects chained together. From within the
evaluate method of the Registrar object you have no way of knowing how many objects
you have got. The Registrar can’ t make any decision based on the type of the object it
thinks it received. This last point actually may be an advantage as trying to find that may
be a violation of Liskov’s Substitution Principle1 any ways.

Concl usi on
In this article we have shown, through an example, the use of Decorator pattern. This is a
pattern that provides quite a bit of flexibility. It eliminates the needs for sub-classing. It is
a pattern that is pretty effective when the object being used should appear to change its
behavior.

Ref er ences

1. Robert C. Martin, Agile Software Development: Principles, Practices and
Pattern, Prentice Hall. Refer to “The Open Closed Principle” and “Liskov’s
Substitution Principle.”

2. Erick Gamma, et. al., Design Patterns, Elements of Reusable Object-Oriented
Software, Addison-Wesley, Boston, MA, 1994.

