Decorator Pattern by Example
Venkat Subramaniam
venkats@agiledevel oper.com
http://www.agiledevel oper.com/downl oad.aspx

Abstract

In this article we present an example that illustrates the use of the Decorator pattern. The
objective isto illustrate the flexibility provided by this very elegant pattern. The example
is presented in Java; however any .NET developer must be able to grasp the concept from
it.

An Eval uation Application

Let’s consider a program where there are some rules that will be used in evaluating an
application submitted to a University. Say the Registrar object, in our program, is
responsible for carrying out the specific evaluation by using the rules. To start with say
we only have been given the GPAEval asthe criteriato be applied.

So, here is one possible code we have for this:

The Registrar classis shown first:

public class Fegistrar
i
public hoolean evaluate (dpplication thedpp, GPAEval criteria)
A odowhat ever vou have to here
S wken 2ll slse done
hoolean success = criteria.ewaluate|thelpp):
A e do what erer else you have to
return success;
.I
'

The evaluate method does whatever it has to. In addition, it cals evaluate on the
GPAEval object. The GPAEva object encapsulates and isolates the evaluation based on
the GPA requirements.

The GPAEval object is shown below:

ipublic class GPAEwval

i

f public boolean evaluate (dpplication thedpp)

3

§ A5 Code to do actugl work like 1f (thedpp.gebtGPA7) = 3) result = truer
; Systen. out.println("GPAEval .evaluate called");

E return true;

ER

tf

The Application class itself does not have a whole lot (and will not in this example) as
shown below:

public class Application

i

Let’slook at atest code that will use al this;
public class TestCode

{
S Fample code to run owr little app
public static woid main(3tring[] args)
i
Application anbdpp = mew Application():
Registrar reg = new Registrar():
GPAEwal aGPAEwval = mew GPAEwalil)
reg.evaluate [andpp, aGPAEwal):
1 h
'

Running this program produces the following result:
GPAEval.evaluate called

Let’s Extend this now
Now that we got this working, let's say we are asked to, in some but not all cases,

evaluate GRE scores in addition to GPA scores. How can we realize this without
breaking the Registrar class?

One possibility isto derive from the GPAEval class as shown below:

public class GREEwval extends GPAEwal

i
public boolean evaluate (Application thelpp)

] {
if (super.evaluate (theldpp))
{

A5 Code to do actual work like if (sheldpp. getGRE() > ...) result = true;
Systen. out.println("GREEval .evaluate called");
return true;

'

el=e

{

return false:

The modified TestCode is shown below:
public class TeztCode

{

A4 Bample code to run owr litdle app

public static wvold main(3tring[] args)
i :
Application andpp = mew Applicationi):
Fegiztrar reg = new Eegistrar():

Systen. ounk.println("Bunning fir=st ewval"):
GPAEwal aGPAEwal = mew GPAEwall):

red.evaluate (andpp, abGPAEwal);

FrEvaluate GRE and GRA

Systen. out.println("Bunning second eval");
GEEEwal aGREEEwal = new GREEwall):
reqg.evaluate (andpp, aGREEwval):

And the output is:
unning first eval
GPAFEval.evaluate called
unning second ewval
GPAEval.evaluate called
GREE+wal.evaluate called

OCP Conpl i ance

That's great so far. We kept the code pretty much OCP* compliant so far. We were able
to accommodate the change in requirements by adding new module of code and not
changing any existing code (not considering change to the TestCode, of course). Now,
say we are asked to evaluate the applicant based on TOEFL and GPA. How can we do

that? We can write another class TOEFLEva which inherits from GPAEva and that
should take care of it right?

G owi ng Pain

What if we are asked to evaluate an application on GPA, GRE and TOEFL
scores? Again, not all application may have to be evaluated based on
all these criteria. Only a few nay need a conbination of these
criteria. Going down the path we have taken so far, should we wite
anot her class that derives from both GREEval and TOEFLEval ? | hear you
saying “you can’t do that in Java (or .NET).” Should | inherit the
class from GREEval and nay be contain TOEFLEval in it? Then | can
del egate the call to the base to evaluate GRE and del egate the call to
t he contai ned TOEFLEval object to evaluate TOEFL scores right?

GPAEval

GREEval TOEFLEval

?

GRETOEFLEval

Do we need to create nore cl asses?

The above approach while may appear to be OCP compliant, leads to class proliferation.
Instead of spending the time writing more classes, we can instead spend the time using
the objects of those classes. Let’s see how we can do that.

What ' s Decorat or ?

Decorator” is a pattern that shows us how to solve problems like this. Another way to
understand decorator is to understand chaining. The criteria objects can be chained to
achieve extensibility and agility (I have to use that word somewhere!).

Let’s say | wake up one morning of an important meeting and look in the mirror and say
“oh Venkat, you do not look good.” What should | do, should | find some one else

instead to go to the meeting? No. | may shower, wear a nice shirt and pant, may be wear a
tie, atie pin, etc. Some one may decide to wear a makeup, ear rings, nose rings, tongue
rings, etc! In other words, we decorate the object with other objects. That is the kind of
ideawe will follow here.

Decorator in Action
Let’s modify the classes and come up with a different hierarchy. We will first create an

abstract class named EvaluationCriteria as shown below:
public abhstract class EvaluationCriteria

{
public abstract boolean evaluate (Application thedpp):

We will modify the Registrar to use this class instead:

public class Fegistrar

i
public hoolean evaluate (Application thedpp, EvaluationCriteria criteria)
7 (
A cdaiukat aerar-yon haveto here
S wken all elsa done
hoolean success = criteria.ewvaluate|thedpp):
£ vo do what erer else you have to
return success;
i }

Now, the GPAEvA is derived from EvaluationCriteria as shown below:
public class GPAEwval extends EvaluationCriteria

i
public hoolean evaluate (Application thedpp)

' i
A0 Code to do actual work like 1 (thedpp.getGPA¢) = 3) result = true;
Systen. ounk.println("GPAEvral. evaluate called") ;!
return true:;

[b

¥

Here comes the trick. We will create aclass called CriterialLink as shown below:

public abstract class Criterialink extemds EvaluationCriteria

i
private EvaluationCriteria next ;
public Criterialink(EvaluationCriteria thelMext)
! {
next = thelNext:
| '
public hoolean evaluate (Application thedpp)
' i
if(next '= null)
return next.evaluate|theldpp):
elze
return true;
| '
'

What's this class doing? It is an abstract class that maintains a link to the next
EvaluationCriteria, thus forming a linked list. When evaluate is called on it, it simply
forwards the reguest to the next object in the chain. It says, “what ever the other object
says, | will gowithit.” (Likewhat | say when my wifeis around!)

Now, let’s see how we would write the GREEval and TOEFLEval classes:
public class GREEwval extemnds Criterialink

{
public GREEwval (EvaluationCriteria thelNext)
I {
super [thelext) ;
I '
public bhoolean evaluate (Application thedpp)
I {
if (super.evaluate (thedpp])
{
A4 Code toodo acktuald work-lake 31F (thedppogebGRE) = ...) result = drue;
System. out.println("GREEval.evaluate called");
return true:
}
el=e
i
return false;
+
I }

pubhlic class TOEFLEwal extends CriterialLink
{
public TOEFLEwval (EvaluationCriteria thelNext)
i ;
super [thelext) ;
I h

public hoolean evaluate (ipplication thelpp)
i
if(super.evaluate (theldppl)
i
AAoCode teosdo actual work Jike 1f (thelppogetTOEFL) » .. .0) resullt = trus;
Systen. out.println (" TOEFLEval .evaluate called");
return true:;
+
else
i
return false;
}
I }
}

What have we done so far? Let’ s visualize the code using the UML notation:

Evaluation
Criteria
Criteria
GPAEval [Thic
GREEval TOEFLEval

We have the Criteria link forming the chain. Such fundamental or leaf criteria like
GPAEva fall in the bottom of the chain. Those additional criteria like GREEval are in
the upper level of the chain. How would we use this now? Let’s ook at the TestCode to
see that:

public class TestCode
i

A Sample code to ranoowr litdle app

public static woid wain(3tring[] args)
] {
Application andpp = new Applicationi):;
Fegistrar reg = mew Begistrar():

Systen.out.println|"Running first ewval");
GPAEwval aGPAEwal = mew GPAEwall):

reg.evaluate (andpp, aGPAEwval);

SrEvaluate GRE and GPA

Systen. ouk.printlni"Running second ewval");
GREEwal aGREEwal = new GREEwval (new GPAEwali()):
reg.evaluate (andpp, aGREEwval);

FAEvaluate TOEFL and GPA

Systen. ouk.println("Funning third ewval");
TOEFLEwal aTCOEFLEwal = mew TOEFLEwal (new GPaEwal()):
redq.evaluate (andpp, aTOEFLEwal) :

ArEvreluate TOEFL . GRE and GPA
Systen. ount.println("Running fourth eval"):
EvaluationCriteria criteria = mew TOEFLEwal (aGREEwval); ./ Cheining of criteria
reg.evaluate (andpp, criteria):
Y 3
3

Notice how the criteria are being chained. If | want to say evaluate TOEFL, GRE and
GPA, | could writeit as

GPAEva aGPAEva = new GPAEval();

GREEva aGREEva = new GREEval(aGPAEva);
EvaluationCriteria criteria= new TOEFLEval (aGREEva);
reg.evauate(criteria);

or | may aso write (at the expense of readability):

EvaluationCriteria criteria= new TOEFLEval (new GREEva (new GPAEval()));
reg.evaluate(criteria);

If 1 want some other combination of criteria, | can readily write that without worrying
about how to subclass one criteria from the other. The output of the program is shown
here:

Funning first ewval
GPAEval.ewvaluate called
Funning second ewval
GPAEval.evaluate called
GREEwval.evaluate called
Funning third ewal
GPAEval.ewvaluate called
TOEFLEwal.evaluate called
Funning fourth ewval
GPA&E+val.ewvaluate called
GEEEwval.evaluate called
TOEFLEwal. evaluate called

Consequences of using Decorator

One argument | have heard from people against Decorator is that it may be slower. There
is no significant performance issue in terms of execution speed. Instead of calling the
method on the base class, you end up calling the method on the object next in the chain.
One significant difference is the number of objects you end up using. In the case of using
inheritance aone, you end up with one object (assuming multiple implementation
inheritance that is). In this case, you have objects chained together. From within the
evaluate method of the Registrar object you have no way of knowing how many objects
you have got. The Registrar can’t make any decision based on the type of the object it
thinks it received. This last point actually may be an advantage as trying to find that may
be aviolation of Liskov's Substitution Principle® any ways.

Concl usi on

In this article we have shown, through an example, the use of Decorator pattern. Thisisa
pattern that provides quite a bit of flexibility. It eliminates the needs for sub-classing. It is
a pattern that is pretty effective when the object being used should appear to change its
behavior.

Ref er ences

1. Robert C. Martin, Agile Software Development: Principles, Practices and
Pattern, Prentice Hall. Refer to “The Open Closed Principle” and “Liskov’s
Substitution Principle.”

2. Erick Gamma, et. a., Design Patterns, Elements of Reusable Object-Oriented
Software, Addison-Wesley, Boston, MA, 1994.

