
Twelve Ways to Make
Code Suck Less

Venkat Subramaniam

venkats@agiledeveloper.com @venkat_s

Why should we care about code
quality?

We can’t be agile if
our code sucks

“Lowering quality lengthens development
time.”—First Law of Programming.

http://c2.com/cgi/wiki?FirstLawOfProgramming

What’s Quality Code?

The quality of code is inversely proportional
to the effort it takes to understand it.

http://blog.agiledeveloper.com/2010/05/thoughts-through-tweets_15.html

Twelve ways We can Help

12. Schedule Time to Lower
Technical Debt

What’s Technical Debt?

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

Ward Cunningham

Example of Technical Debts

Low quality is not technical debt

What Causes Technical Debt?

Not “All or Nothing”

Schedule Time

Dev
elo

pm
en

t

Va
ca

tio
n/s

ick
ne

ss

Mee
tin

gs

Pa
yin

g T
ec

hn
ica

l D
eb

t

Sla
ck

 tim
e…

Pla
nn

ing
…

Linda Rising

Dev
elo

pm
en

t

Va
ca

tio
n/s

ick
ne

ss

Mee
tin

gs

Pa
yin

g T
ec

hn
ica

l D
eb

t

Sla
ck

 tim
e…

Pla
nn

ing
…

11. Favor High Cohesion

Narrow, focused,
does only one thing well

Why?

Think about frequency of change

low cyclomatic complexity
high cohesion ==

10. Favor Loose Coupling

Tight coupling make code

hard to extend

hard to test

Lower coupling

Loose vs. tight coupling

Eliminate where possible

Excessive
Mocking
to Test
This

Non deterministic
Dependency

Light
Mocking
to Test
This

Non deterministic
Dependency

No
Mocking
to Test
This

9. Program with Intention

http://stackoverflow.com/questions/184618/what-is-the-best-
comment-in-source-code-you-have-ever-encountered

Beck’s Rule for Simple Design

http://martinfowler.com/bliki/BeckDesignRules.html

Programming Deliberately

• When you write test before writing code…

8. Avoid Primitive Obsession

It’s code like this that prematurely turns
programmers into managers

http://blog.agiledeveloper.com/2015/08/the-functional-style.html

7. Prefer Clear Code
 over Clever Code

10% of the time, we write ugly code for
performance reasons, the other 90% of the time,

we write ugly code to be consistent.

http://blog.agiledeveloper.com/2010/05/thoughts-through-tweets_15.html

http://blog.agiledeveloper.com/2010/05/thoughts-through-tweets_15.html

Those who sacrifice quality to get
performance may end up getting neither.

“There are two ways of constructing a
software design. One way is to make it
so simple that there are obviously no

deficiencies and the other is to make it
so complicated that there are no

obvious deficiencies”— Tony Hoare

“There are two ways of constructing a
software design. One way is to make it
so simple that there are obviously no

deficiencies and the other is to make it
so complicated that there are no

obvious deficiencies”— Tony Hoare

6. Apply Zinsser's Principle on
Writing

Simplicity

Clarity

Brevity

Humanity

5. Comment Why, not What

Don’t comment to
cover up bad code

Write Expressive
Self-Documenting Code

A good code is like a good joke

http://blog.agiledeveloper.com/2006/01/comments-on-
comments.html

Writing comments is like
explaining a joke

order(3) 3 cups?…

order(CoffeeSize.LARGE)

order(3) // large coffee

https://media.pragprog.com/titles/pad/PAD-pulloutcard.pdf

4. Avoid Long Methods—Apply
SLAP

Perils of Long Methods

How long is long?

Turns out long is not about length
of code, but levels of abstraction

3. Give Good Meaningful Names

Variable Names Represent
Abstractions

2. Do Tactical Code Reviews

Peer reviews catch 60% of defects.

Perspective-based reviews catch 35% more defects than
nondirected reviews.

Peer reviews complement testing.

Technical and social activity.

https://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf

Facilitating Tactical Code
Reviews

1. Reduce State & State Mutation

Twelve Ways to Make
Code Suck Less

12. Schedule Time to Lower Technical Debt
11. Favor High Cohesion
10. Favor Loose Coupling
 9. Program with Intention
 8. Avoid Primitive Obsession
 7. Prefer Clear Code over Clever Code
 6. Apply Zinsser's Principle on Writing
 5. Comment Why, not What
 4. Avoid Long Methods—Apply SLAP
 3. Give Good Meaningful Names
 2. Do Tactical Code Reviews
 1. Reduce State & State Mutation

http://agiledeveloper.com/downloads.html

Thank you

http://agiledeveloper.com/downloads.html

venkats@agiledeveloper.com
@venkat_s

