
Testing With Dependencies

Venkat Subramaniam
venkats@AgileDeveloper.com

Unit Testing
Unit Testing has significant benefits

Serves as a design tool

Helps to make code more robust

Serves as a documentation

Safety net while refactoring

Helps quickly identify problems

Gives feedback when code begins to break

…
2



UT is easy when…
Unit testing is easy when 

your code does not depend on any thing

No database, file system, web service, socket, … 
dependencies

your code can be tested fully in isolation

Does not require other classes/components, frameworks, 
etc.

You quickly create an object, run some tests, and off you go

Code
Under Test

3

UT is hard when…
Unit testing is hard when

your code had dependencies

it needs to fetch that data from the 
database

needs access to the network for some 
validation

needs to validate the credit card number

…
Code

Under Test
4



But remember UT means 
Automation

But when we talk about unit testing, we 
mean automated unit testing

We need to be able to run tests quickly

Run them as many times as we like

You certainly don’t want to do either 
laborious and/or manual setup and tear down

You want to check for behavior and ill-
behavior of dependent code as well

5

What’s a Mock?

A Mock object stands in for the real object

It is an object that you first coach… tell him what to 
say and how to dance, then you set him loose, and he 
mimics what you coached

Simulates the behavior of your dependencies for you

6



But my code depends on 
real stuff

Code 
under test

Code
You

depend on

Tes

Test

Test

Code 
under test

Code
You

depend on

Test

Test

Test

Interface

Mock
Test provides Code with

Mock (or real)

Dependency Inversion 
Principle

7

What can a Mock do for you?
A Mock Object can

simulate the expected functionality

isolates your code from details that may 
be filled in later

speeds up development of code under test

Can simulate both behavior and ill-
behavior

can be refined incrementally by replacing 
with actual code

8



A class to create
Write a Monitor class that will monitor a directory 
on the file system for any addition or deletion of 
files

It raises an alarm or sends an email when a 
change is detected

Remember you want to automate your tests

Each time you run your test

don’t expect me to create a file in the 
directory being monitored

No, don’t expect me to listen to your stinkin’ 
alarm or be spammed by your emails

9

Mocking Exercise 1
Mock to stand in for the code that will

Represent the file system (or change to it)

Code to raise an alarm

Code to send out an email

10



Frameworks to ease 
your pain

You can certainly hand toss your mock

In fact, that is not a bad idea

You understand what’s going on

You control your code

You have the flexibility to modify at your will

But, you may end up creating a lot of classes

Why not simply use a mock instead of creating 
one… this is where the frameworks come in

EasyMock, JMock, etc. 11

EasyMock
EasyMock helps create Mock objects for you 
on the fly

Instead of spending time creating a Mock 
class, you can get ready to use it

Let’s take a look at using EasyMock

Mock

1 Coach
2

Act now
3

Behaves
as told

4 Verify
to see if calls were made

as you expected

Code
Under
Test

12



Mocking Exercise 2

Mocking with EasyMock

13

EasyMock is Easy?

While the objective is to make it easier to create mock, 
the reality is it can get a bit tedious setting up the 
mock’s behavior

Should you use EasyMock

If it is simpler to hand toss a mock, do so

If it is easier to use EasyMock, then use it

On a project, you may use either approach at different 
places

14



Switching between Mock 
and Real

Your code works with Mock

Will it work with real object

When problems creep up, you may want to 
experiment with mock and real object

So, how can you switch between these so 
you can test with mock or real code

Let’s see how…
15

To Mock or not to?
To

Mock only code that code under test directly 
depends on

Mock object that is hard to work with

Mock object that takes effort to set up

Mock object whose behavior is hard to predict

Mock object that requires lots of resources

Mock objects that are computationally expensive 
or very slow to respond

Mock objects that your test needs to verify with
16



To Mock or not to?
Not To

Do not mock for the sake of mocking, ask if you 
can eliminate the need for mock by refactoring 
your code

Mock your objects but not resources like 
database, etc.

When writing the real code is easier than 
writing mock

Do not mock what will slow down your UT, mocks 
should be used to speed up UT

17

Other Frameworks

You may hand toss a Mock or use EasyMock/JMock for 
POJOs

What about something more complex like Servlets, 
EJBs, JDBC, etc.

Imagine hand tossing a Mock for one of these 
interfaces?

You may use frameworks like MockRunner to help you 
with that

18



MockRunner

To unit test apps in J2EE environment

Provides mock for Servlet, JDBC, JMS, struts actions, … 
without the real container

No need for the app server or database

Does not provide any in-container testing

Can be combined with MockEJB for EJB

19

Dynamic Languages

Dynamic Languages (like Ruby and Groovy) make 
Mocking easier

Duck Typing and Meta Programming eliminates the 
need for heavy weight frameworks and tools

20



Mocking Exercise 3

Mocking Using Dynamic Languages

21

References
http://mockobjects.com

http://easymock.org

22

You can download examples and slides from
http://www.agiledeveloper.com - download



Thank You!
Please fill in your session evaluations

23

You can download examples and slides from
http://www.agiledeveloper.com - download


