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Abstract

Abstract It is easy to start a thread and then the fun starts! Developing a multithreaded
application can be quite a challenge. You need to worry about thread safety,
cleanup, contention, support and restrictions. This presentation starts with the
features of multithreading in .NET and goes into issues of contention, performance,
thread pooling, invocation restrictions, and related concepts. Issues related to how
exceptions get handled in a multithreaded application will also be presented. Topics
will also include issues of when to use multithreading and things we need to pay
close attention to when designing and developing a multithreaded application.

About the Speaker Dr. Venkat Subramaniam, founder of B - R
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architecture, design, and development of software g“l’e‘
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niversity School of continuing studies.
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Event-driven Programming
e Conventional Console Application Model

e Event
- Signal a program receives from the operating
system as a result of some (user) action
e Event-driven program
- receives and responds to events
— where in these events are generally asynchronous

Event sources
like mouse,

key L

our
Application
metho

oS— >
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Event Handling

Defines prototype for

handler method .
SomeClient
P— void myHandler{int info)
: {
Component
<:Beg_r;mi Delegate
notficaton }
-o.'.... %mecller]t
| Vbtd spmeHandler(int info)
{ I\
}
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Delegate

e Event handlers traditionally were global
or static functions

e In .NET, delegates allow a lot more

e Delegates are data structures (objects)
that hold
—either a pointer to global or static function

—or a pointer to an object’s method and the
object itself

— are object-oriented, type safe and secure

e All Delegates derive from the Delegate

class
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Writing A Delegate
e Delegate classes are written with special
syntax
e Compiler does special processing

— Writes a constructor and Invoke method
when compiled

e You can maintain a list of delegates by
simply adding and subtracting
- myDelegate += anotherDelegate;
// Adds the delegate
- myDelegate -= anotherDelegate;

// Removes the delegate %
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Events

e Events are implemented using the Delegates
e Act like the connection point in COM

e You first declare a delegate, only if a suitable
one is not available
- must take two arguments: Object source, EventArgs e
- .NET has predefined delegate EventHandler

e Any number of events can use the same
Delegate definition

e Use event keyword to declare event in a class

e events appear like fields within a class

- big difference: fields can’t appear in interface,
events can
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Using Events

public class StockQuote {
public event EventHandl er hi ghPriceEvent;
public event EventHandl er | owPriceEvent;
private void newH ghReached(doubl e anpbunt) {
if (highPriceEvent !'= null)
hi ghPri ceEvent (thi s,
new Pri ceDat a(anount));

} \-—Derivesfrom EventArgs

public static void highReport(Qbject source, EventArgs e){..}
St ockQuot e st kQuote = new StockQuote();

st kQuot e. hi ghPri ceEvent += new
Event Handl er (User . hi ghReport);
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What's difference?
¢ At first sight events are nothing but

delegate

e We use a special keyword event

- so studio can recognized it as special
m e m b e r? L. Stoc_:tlLi:sofublic auta ansi beforefieldinit

e Actually there's e
more to it!

e The secret is in IL aSsmevms o oo

e Take a closer look at delegates and

¢ lowDelegate : private class WiitihgaDelegate. StockQuoteDelegate
¢ rna : private static literal int32

¢ price: private floatGd

.ctor: vaid(]

events in IL
— Special synchronizing methods added for events%
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Support for Multithreading

o C#'s supports multithreading through
System.Threading namespace
e At the core is the Thread class
- unlike Java, you can’t derive from this, it is
sealed
e Thread works with a delegate called
ThreadStart

e For creating a thread, create an object
of Thread, register a delegate with it
and start
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Thread Class

public seal ed class Thread {
public static Thread Current Thread { get; }

public static void Sleep(int mlliSeconds);

public ApartmentState ApartnmentState { get; set; }
public string Name { get; set; }

public ThreadState ThreadState { get; }

public void Abort();
public void Start();
public void Join(.);
public void Suspend();
public void Resune();

Manages a thread of execution
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Thread Class & Thread of Execution

public class Dog {
private void keepWaggi ng() { while(true) {.} }
public void start ToWag() {
waggi ngThread =

new Thread(new ThreadSt art (keepWaggi ng) ) ;
/ waggi ngThread. Start();
}
[ public void stopWaggi ng() {...waggi ngThread. Abort(); }
Start
thread t1

O
wal "

. O Wa%/l . .
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Starting Limitations

e On a thread object, start may be called
only once

e What if I call start more than once?
e You get ThreadStateException

e A Thread object is not reusable

- it represents the identity of one thread of
execution only %
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Multithreaded StopWatch

public class MiinForm: System W ndows. Forms. Form { ...
private int count = O;
private bool keepCounting = false;
private void start(){
keepCounting = true;
whi | e( keepCounti ng) {
count ++;
TBSeconds. Text = "" + count;
Thr ead. Sl eep(1000);

}

}
private void stop() { keepCounting = false; }

private void StartButton_Cick(
obj ect sender, EventArgs e) {..

new Thread(new ThreadStart(start)).start();

¥ Form1 A =1olx| ¥ Formi =10ix]
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Obtaining Thread Information

e Sometimes it is necessary to find details
of Thread executing some method

e Thread.CurrentThread

- returns true identity of Thread object that
represents current thread of execution

e Naming a thread may be useful for
debugging
—accessed through the Name property
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Obtaining Thread ID

e Oddly, there is no way to get the
Thread’s ID from a thread object

e You can however, get it from the
AppDomain class!

e AppDomain.GetCurrentThreadID()
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IsBackground

e Background thread runs only if there is a
non-background thread running

e By default thread is not background

e Ask yourself if your thread keeps CLR
running or does it quit?

=
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Quiz Time
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Thread Interrupt and Abort

e Important to understand these well

e Interrupt will
- throw ThreadInterruptedException

- Only is thread is blocked on a Sleep, Wait, Join
¢ if not, is thrown when ever it gets blocked

e Abort will
—throw ThreadAbortException

- This exception propagates automatically after
a catch
e We could say thread is terminated upon Abort
Agile Developer Caution, call to ResetAbort Taming .NET Multithreading-27
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Background and Abort

e According to documentation when
process exits background threads are
aborted

e Not in the sense of Thread Abort however

e They are terminated - no opportunity to
clean up - tough luck
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Know your Exit

e Exit simply terminates the process, the
CLR

e No opportunity to clean up

e Any thread that has security permission
to call Exit can terminate the process
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Multithreading and Contention
e Several threads updating same data

public void increnent() {
int val = count;
Thr ead. Sl eep(5000);
count = val + 1;
counterTB. Text = "" + count;

[~

public void decrenent() {
int val = count;
Thr ead. Sl eep(5000);
count = val - 1;
counterTB. Text = "" + count;
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Thread Synchronization
e C# provides mutual exclusion through lock
e At most one thread may be in a critical section
¢ CLR locks the object when a thread is

executing any critical section block of code

locking that obiject
public void increnent() {

lock(this) { ~ Blocksuntil
int val = count: obtaining lock on object
public void decr(e—rre—ny
lock(this) {

int val = count;

b€ Thr ead. Sl eep(5000) ;
} count = val - 1;
counterTB. Text = "" + count;

} .
} T Refeases lock automatical ly
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Synchronization and Threads

Two objects of same class, f3 has no critical section

LT

tL t2 t3 w4

tl calsfl, f2 on Ol and f1 on O2; similarly t4...
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Contention for Class (static)

_ va]ria bles
e Bacteria Example

Keeps tract of number of Bacterial objects

?Ubl ' Bacteria() Thisistoo sweeping.

lock (typeof (Bacteria)) {
bact eri aCount ++;
}

}

e If all that you want to do is increment or
decrement a value, you may also use the
InterlockedIncrement or
InterlockedDecrement
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Closer look at lock

e lock is actually to short form/wrapper
e lock(obj) { ... code ... } is equivalent to

System.Threading.Monitor.Enter(obj);
try
{

b
finally
{

¥

... code ...

System.Threading.Monitor.Exit(obj);
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The Monitor

e This is the central class that provides
synchronization in .NET

o It obtains or releases lock on any given object

e Blocks threads requesting lock until they gain
exclusive access - providing mutual exclusion

public class Mnitor {
public static void Enter(Object obj);
public static void Exit(Object obj);
public static bool TryEnter(CObject obj);
public static bool WAit(Object obj);
public static void Pul se(Object obj);
public static void Pul seAll (Object obj);

}
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Thread Pool

Should you use a thread from thread pool or

create a thread yourself?

Using thread pool is so much easier, isn't it?

Gives better performance as well

But,

— at most 25 threads per process per processor by

default

- You may holdup start of some tasks — use caution
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e Calling

e Use ca
thread

hGile Developer

Delegate Beginlnvoke

methods which take parameter in

another thread is hard

e But, look how easy it is to start a method
using the Delegate Beginlnvoke method

ution in understanding where the
is executing

— Thread Pool thread or not
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Thread Pool Exceptions

e What happens when an exception is
thrown from a thread in thread pool?

e .NET Framework quietly suppresses it!

e This is what happens when you invoke a
web service using asynch call and it
breaks

e Also when you use Delegate.Beginlnvoke
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WinForm Controls

e Most of the methods on WinForm
controls are not thread safe
- This is actually better for performance

- But that’s also like having un-gated rail road
crossings

e Ask InvokeRequired and jump threads
before accessing the control
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Conclusion

e Starting thread is easy
e Getting it right is hard

e A number of excellent facilities provided
in .NET

e A few Gotchas as well

e Only one way to master Multithreading...
understand it well
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