Taming .NET Multithreading

Venkat Subramaniam
venkats@agiledeveloper.com

http://www.aqgiledeveloper.com/download.aspx

Code examples from this presentation may be downloaded from the above URL

Agile Developer Taming .NET Multithreading-1

Abstract

Abstract It is easy to start a thread and then the fun starts! Developing a multithreaded
application can be quite a challenge. You need to worry about thread safety,
cleanup, contention, support and restrictions. This presentation starts with the
features of multithreading in .NET and goes into issues of contention, performance,
thread pooling, invocation restrictions, and related concepts. Issues related to how
exceptions get handled in a multithreaded application will also be presented. Topics
will also include issues of when to use multithreading and things we need to pay
close attention to when designing and developing a multithreaded application.

About the Speaker Dr. Venkat Subramaniam, founder of B - R
Agile Developer, Inc., has trained and mentored
thousands of software developers in the US, Canada Practices ofan
and Europe. He has significant experience in Adle |
architecture, design, and development of software g“l’e‘
applications. Venkat helps his clients effectively apply #7X

and succeed with agile practices on their software
projects, and speaks frequently at conferences.
He is also an adjunct faculty at the University of
Houston (where he received the 2004 CS department
teaching = excellence award) and teaches the
rofessional software developer series at Rice
niversity School of continuing studies.
Venkat has been a frequent speaker at No Fluff Just
Stuff Software Symposium since Summer 2002.

NET
Gotchas A\

ORELLY

Agile Developer Taming .NET Multithreading-2

Taming .NET Multithreaing

Event Handling
Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-3

Event-driven Programming
e Conventional Console Application Model

e Event
- Signal a program receives from the operating
system as a result of some (user) action
e Event-driven program
- receives and responds to events
— where in these events are generally asynchronous

Event sources
like mouse,

key L

our
Application
metho

oS— >

. SR&JI’C. .
Agile Developer Taming .NE uItl?ﬁreadl ng-4

Event Handling

Defines prototype for

handler method .
SomeClient
P— void myHandler{int info)
: {
Component
<:Beg_r;mi Delegate
notficaton }
-o.'.... %mecller]t
| Vbtd spmeHandler(int info)
{ I\
}
Agile Developer Taming .NET Multithreading-5

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-6

Delegate

e Event handlers traditionally were global
or static functions

e In .NET, delegates allow a lot more

e Delegates are data structures (objects)
that hold
—either a pointer to global or static function

—or a pointer to an object’s method and the
object itself

— are object-oriented, type safe and secure

e All Delegates derive from the Delegate

class
Agile Developer Taming .NET Multithreading-7

Writing A Delegate
e Delegate classes are written with special
syntax
e Compiler does special processing

— Writes a constructor and Invoke method
when compiled

e You can maintain a list of delegates by
simply adding and subtracting
- myDelegate += anotherDelegate;
// Adds the delegate
- myDelegate -= anotherDelegate;

// Removes the delegate %

Agile Developer Taming .NET Multithreading-8

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-9

Events

e Events are implemented using the Delegates
e Act like the connection point in COM

e You first declare a delegate, only if a suitable
one is not available
- must take two arguments: Object source, EventArgs e
- .NET has predefined delegate EventHandler

e Any number of events can use the same
Delegate definition

e Use event keyword to declare event in a class

e events appear like fields within a class

- big difference: fields can’t appear in interface,
events can

Agile Developer Taming .NET Multithreading-10

Using Events

public class StockQuote {
public event EventHandl er hi ghPriceEvent;
public event EventHandl er | owPriceEvent;
private void newH ghReached(doubl e anpbunt) {
if (highPriceEvent !'= null)
hi ghPri ceEvent (thi s,
new Pri ceDat a(anount));

} \-—Derivesfrom EventArgs

public static void highReport(Qbject source, EventArgs e){..}
St ockQuot e st kQuote = new StockQuote();

st kQuot e. hi ghPri ceEvent += new
Event Handl er (User . hi ghReport);

Agile Developer Taming .NET Multithreading-11

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-12

What's difference?
¢ At first sight events are nothing but

delegate

e We use a special keyword event

- so studio can recognized it as special
m e m b e r? L. Stoc_:tlLi:sofublic auta ansi beforefieldinit

e Actually there's e
more to it!

e The secret is in IL aSsmevms o oo

e Take a closer look at delegates and

¢ lowDelegate : private class WiitihgaDelegate. StockQuoteDelegate
¢ rna : private static literal int32

¢ price: private floatGd

.ctor: vaid(]

events in IL
— Special synchronizing methods added for events%
Agile Developer Taming .NET Multithreading-13

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads

Thread Interrupt and Abort
Background and abort
Behavior of Exit

Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-14

Support for Multithreading

o C#'s supports multithreading through
System.Threading namespace
e At the core is the Thread class
- unlike Java, you can’t derive from this, it is
sealed
e Thread works with a delegate called
ThreadStart

e For creating a thread, create an object
of Thread, register a delegate with it
and start

Agile Developer Taming .NET Multithreading-15

Thread Class

public seal ed class Thread {
public static Thread Current Thread { get; }

public static void Sleep(int mlliSeconds);

public ApartmentState ApartnmentState { get; set; }
public string Name { get; set; }

public ThreadState ThreadState { get; }

public void Abort();
public void Start();
public void Join(.);
public void Suspend();
public void Resune();

Manages a thread of execution

Agile Developer Taming .NET Multithreading-16

Thread Class & Thread of Execution

public class Dog {
private void keepWaggi ng() { while(true) {.} }
public void start ToWag() {
waggi ngThread =

new Thread(new ThreadSt art (keepWaggi ng)) ;
/ waggi ngThread. Start();
}
[public void stopWaggi ng() {...waggi ngThread. Abort(); }
Start
thread t1

O
wal "

. O Wa%/l . .
Agile Developer Taming .NET Multithreading-17

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-18

Starting Limitations

e On a thread object, start may be called
only once

e What if I call start more than once?
e You get ThreadStateException

e A Thread object is not reusable

- it represents the identity of one thread of
execution only %

Agile Developer Taming .NET Multithreading-19

Multithreaded StopWatch

public class MiinForm: System W ndows. Forms. Form { ...
private int count = O;
private bool keepCounting = false;
private void start(){
keepCounting = true;
whi | e(keepCounti ng) {
count ++;
TBSeconds. Text = "" + count;
Thr ead. Sl eep(1000);

}

}
private void stop() { keepCounting = false; }

private void StartButton_Cick(
obj ect sender, EventArgs e) {..

new Thread(new ThreadStart(start)).start();

¥ Form1 A =1olx| ¥ Formi =10ix]

Agile Developer ultithreading-20

Obtaining Thread Information

e Sometimes it is necessary to find details
of Thread executing some method

e Thread.CurrentThread

- returns true identity of Thread object that
represents current thread of execution

e Naming a thread may be useful for
debugging
—accessed through the Name property

Agile Developer Taming .NET Multithreading-21

Obtaining Thread ID

e Oddly, there is no way to get the
Thread’s ID from a thread object

e You can however, get it from the
AppDomain class!

e AppDomain.GetCurrentThreadID()

Agile Developer Taming .NET Multithreading-22

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-23

IsBackground

e Background thread runs only if there is a
non-background thread running

e By default thread is not background

e Ask yourself if your thread keeps CLR
running or does it quit?

=

Agile Developer Taming .NET Multithreading-24

Quiz Time

\Na

a
[Q

hGile Developer

Taming .NET Multithreading-25

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates

Support for Multithreading
Starting limitations
Background threads

Thread Interrupt and Abort
Background and abort
Behavior of Exit

Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

hGile Developer

Taming .NET Multithreading-26

Thread Interrupt and Abort

e Important to understand these well

e Interrupt will
- throw ThreadInterruptedException

- Only is thread is blocked on a Sleep, Wait, Join
¢ if not, is thrown when ever it gets blocked

e Abort will
—throw ThreadAbortException

- This exception propagates automatically after
a catch
e We could say thread is terminated upon Abort
Agile Developer Caution, call to ResetAbort Taming .NET Multithreading-27

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-28

Background and Abort

e According to documentation when
process exits background threads are
aborted

e Not in the sense of Thread Abort however

e They are terminated - no opportunity to
clean up - tough luck

Agile Developer Taming .NET Multithreading-29

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-30

Know your Exit

e Exit simply terminates the process, the
CLR

e No opportunity to clean up

e Any thread that has security permission
to call Exit can terminate the process

Agile Developer Taming .NET Multithreading-31

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-32

Multithreading and Contention
e Several threads updating same data

public void increnent() {
int val = count;
Thr ead. Sl eep(5000);
count = val + 1;
counterTB. Text = "" + count;

[~

public void decrenent() {
int val = count;
Thr ead. Sl eep(5000);
count = val - 1;
counterTB. Text = "" + count;

Agile Developer Taming .NET Multithreading-33

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-34

Thread Synchronization
e C# provides mutual exclusion through lock
e At most one thread may be in a critical section
¢ CLR locks the object when a thread is

executing any critical section block of code

locking that obiject
public void increnent() {

lock(this) { ~ Blocksuntil
int val = count: obtaining lock on object
public void decr(e—rre—ny
lock(this) {

int val = count;

b€ Thr ead. Sl eep(5000) ;
} count = val - 1;
counterTB. Text = "" + count;

} .
} T Refeases lock automatical ly
Agile Developer Taming .NET Multithreading-35

Synchronization and Threads

Two objects of same class, f3 has no critical section

LT

tL t2 t3 w4

tl calsfl, f2 on Ol and f1 on O2; similarly t4...
Agile Developer Taming .NET Multithreading-36

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-37

Contention for Class (static)

_ va]ria bles
e Bacteria Example

Keeps tract of number of Bacterial objects

?Ubl ' Bacteria() Thisistoo sweeping.

lock (typeof (Bacteria)) {
bact eri aCount ++;
}

}

e If all that you want to do is increment or
decrement a value, you may also use the
InterlockedIncrement or
InterlockedDecrement

Agile Developer Taming .NET Multithreading-38

Closer look at lock

e lock is actually to short form/wrapper
e lock(obj) { ... code ... } is equivalent to

System.Threading.Monitor.Enter(obj);
try
{

b
finally
{

¥

... code ...

System.Threading.Monitor.Exit(obj);

Agile Developer Taming .NET Multithreading-39

The Monitor

e This is the central class that provides
synchronization in .NET

o It obtains or releases lock on any given object

e Blocks threads requesting lock until they gain
exclusive access - providing mutual exclusion

public class Mnitor {
public static void Enter(Object obj);
public static void Exit(Object obj);
public static bool TryEnter(CObject obj);
public static bool WAit(Object obj);
public static void Pul se(Object obj);
public static void Pul seAll (Object obj);

}
Agile Developer Taming .NET Multithreading-40

hGile Developer

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

hGile Developer

Thread Pool

Should you use a thread from thread pool or

create a thread yourself?

Using thread pool is so much easier, isn't it?

Gives better performance as well

But,

— at most 25 threads per process per processor by

default

- You may holdup start of some tasks — use caution

Taming .NET Multithreading-41

Taming .NET Multithreading-42

Ta

Delegates
Events
Events vs.

Contention
Locking

Delegate
Lost Excep

Conclusion

hGile Developer

ming .NET Multithreaing

Event Handling

Delegates

Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit

Improper locking
Thread Pool behavior

BeginInvoke
tions

WinForm Controls Thread Safety

Taming .NET Multithreading-43

e Calling

e Use ca
thread

hGile Developer

Delegate Beginlnvoke

methods which take parameter in

another thread is hard

e But, look how easy it is to start a method
using the Delegate Beginlnvoke method

ution in understanding where the
is executing

— Thread Pool thread or not

Taming .NET Multithreading-44

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke
Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-45

Thread Pool Exceptions

e What happens when an exception is
thrown from a thread in thread pool?

e .NET Framework quietly suppresses it!

e This is what happens when you invoke a
web service using asynch call and it
breaks

e Also when you use Delegate.Beginlnvoke

Agile Developer Taming .NET Multithreading-46

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

Agile Developer Taming .NET Multithreading-47

WinForm Controls

e Most of the methods on WinForm
controls are not thread safe
- This is actually better for performance

- But that’s also like having un-gated rail road
crossings

e Ask InvokeRequired and jump threads
before accessing the control

Agile Developer Taming .NET Multithreading-48

Quiz Time

\Na

a
[Q

hGile Developer

Taming .NET Multithreading-49

Taming .NET Multithreaing

Event Handling

Delegates

Events

Events vs. Delegates
Support for Multithreading
Starting limitations
Background threads
Thread Interrupt and Abort
Background and abort
Behavior of Exit
Contention

Locking

Improper locking

Thread Pool behavior
Delegate BeginInvoke

Lost Exceptions

WinForm Controls Thread Safety
Conclusion

hGile Developer

Taming .NET Multithreading-50

Conclusion

e Starting thread is easy
e Getting it right is hard

e A number of excellent facilities provided
in .NET

e A few Gotchas as well

e Only one way to master Multithreading...
understand it well

Agile Developer Taming .NET Multithreading-51

References
1. .NET Gotchas, Venkat Subramaniam, O’Reilly.

2. Microsoft Developer Network (MSDN).
http://msdn.microsoft.com

3.Essential .NET, Volume I: The Common
Language Runtime, Don Box, Addison-
Wesley.

Please fill out Your evaluations!
Agile Developer Taming .NET Multithreading-52

