Prudent OO Development

Venkat Subramaniam
venkats@agiledeveloper.com

September 2003

Presentation and examples can be downloaded from
http://www.agiledeveloper.com/download.aspx

Agile Developer Prudent OO Development 1

Abstract

Abstract Developing with objects involves more than using languages
like Java, C#, C++ or Smalltalk for that matter. How object-
oriented is our code? From time to time, the OO paradigm can
stump even expert developers. In this presentation the author will
present some of the challenges that are fundamental in nature.
Then he will present some principles and good practices for
prudent development of OO code.

Speaker Dr. Venkat Subramaniam, founder of Agile Developer, Inc.,
has taught and mentored more than 2,500 software developers
around the world. He has significant experience in architecture,
design, and development of distributed object systems. Venkat is
an adjunct Iprofessor at the University of Houston and teaches the
Professional Software Developer Series at Rice University's
Technology Education Center. He may be reached at
venkats@agiledeveloper.com.

Examples Any page with a has an example attached
Download from http://www.agiledeveloper.com/download.aspx

Agile Developer Prudent OO Development 2

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP

Conclusion

Agile Developer Prudent OO Development 3

The Pillars of the Paradigm

e Abstraction
e Encapsulation

e Hierarchy
- Association, Aggregation
- Inheritance

e Polymorphism

Agile Developer Prudent OO Development 4

What's OQ?

e Is it using Objects?
e Is it using C++, Java, C#, Smalltalk?
e No, its got to be using UML?! ©

e What makes a program 0OQO?
e How do you measure good design?

Agile Developer Prudent OO Development 5

Prudent OO Development

Basics
Metrics
Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP

e Conclusion

Agile Developer Prudent OO Devel opment 6

Metrics for class Design

Cohesion
- The object is focused on doing one thing well

Coupling
- Number of classes that your class depends on

A class is forced to change more often if
- it does more than one thing - Low Cohesion
- It depends on a number of classes - high coupling

We should strive for
- High cohesion
- Low coupling

Agile Developer Prudent OO Development 7

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design

DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP

Conclusion

Agile Developer Prudent OO Devel opment 8

Object Copying

e Let’s first look at some thing simple and
fundamental

e How do we copy an object

e Consider an example of a Car with an
Engine

Agile Developer Prudent OO Development 9

Venkat’s past recommendation

e Before reading Bloch’s Effective Java!
e Writing a Copy Constructor is a bad idea
e Why?

¢ Leads to extensibility issues

w

Agile Developer Prudent OO Development 10

Bloch’'s Recommendation
Cloning comes with its own problems _ Further
~ No constructor called when object cloned 2% "¢ 1]

- If a class has final fields, these can’t be given a
value within close method!

Bloch’s recommendation:

... You are probably better off providing
some alternative means of object copying
or simply not providing the capability.” He
goes on to say "A fine approach to object
copying is to provide a copy constructor.”
I agree with the part “simply not providing the
capability”

But providing a copy constructor has problems

mentioned earlier?
e What's the solution? %

Agile Developer Prudent OO Development 11

A combined approach

e Implement the clone method Reading: [5]
- but not the way it is generally done in Java

e Write a protected copy constructor

e From the clone method, invoke the
protected copy constructor

w

Agile Developer Prudent OO Devel opment 12

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP

Conclusion

Agile Developer Prudent OO Development 13

Bad design

¢ Perils of a bad design
- Rigidity
e Hard to change, results in cascade of changes
- Fragility
e Breaks easily and often
- Immobility
e Hard to reuse (due to coupling)
- Viscosity
e Easy to do wrong things, hard to do right things
- Needless Complexity
e Complicated class design, overly generalized
- Needless Repetition
e Copy and Paste away
- Opacity

¢ Hard to understand

Agile Developer Prudent OO Development 14

Principles
e Guiding Principles that help develop
better systems

e Use principles only where they apply

e You must see the symptoms to apply
them

e If you apply arbitrarily, the code ends up
with Needless Complexity

Agile Developer Prudent OO Development 15

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP

e Conclusion

Agile Developer Prudent OO Development 16

DRY

e Don't Repeat Yourself Fur t her
Readi ng: [3]

e “"Every Piece of Knowledge must have a
single, unambiguous, authoritative
representation within a system”

¢ One of the most difficult, but most seen
e How many times have you see this

happen 1. Validates input
—— (@
Execution O
Engine @) 3. Took weeksto get
(chokeson [«—— Frontend this issue resolved
certain names of O o
objects) O
Agile Developer VA rIClioN prudent OO Development 17
DRY

e Some times hard to realize this

e It is much easier to copy, paste and
modify code to get it working the way
you want it, isn't it

e Duplicating code results in
- Poor maintainability
- Expensive to fix bugs/errors
- Hard to keep up with change

Agile Developer Prudent OO Development 18

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP

Conclusion

Agile Developer Prudent OO Development 19

Composition vs. Inheritance
e Inheritance represents is-a relationship

Furt her

e Inheritance increases coupling Readi ng: [4]
- Stronger binding to base class

e Inheritance is not necessarily for code
reuse

e It has more to do with Substituitability

e "Use composition to extend
responsibilities by delegating work to
other more appropriate objects”

Agile Developer Prudent OO Devel opment 20

inheritance

Applet

I

Applet With
Different Layout

Will suffer extensibility
When the discriminator
is changed

Agile Developer

Strategy

e Example: Use of strategy pattern in Java
applet layout manager - instead of

Applet

A Abstract Layout

Manager

AF

Layout Mgrl

Layout Mgr2

Prudent OO Development 21

Prudent OO Development

Basics
Metrics

Bad Design
DRY

SRP

OCP

LSP

DIP

ISP
Conclusion

Agile Developer

Object Copying

Composition vs. Inheritance

Prudent OO Devel opment 22

SRP
e Single-Responsibility Principle
e What metric comes to mind? Readi ngr (2]
¢ A class should have only one reason to
change”
e Some C++ books promoted bad design
- Overloading input/output operators!
e What if you do not want to display on a
terminal any more?
- GUI based, or web based?

Agile Developer Prudent OO Devel opment 23

SRP...

Alarm
Control

Ul +alert()
stem
+display(Panel >)
Faces mor e frequent chang

Has greater dependency (to Ul related stuff)

A

Related topics:

Alarm
MvC | Control
Anaysis moddl stereotypes : +alert() System
© O A r
Control Entity Boundary

AlarmUl

Ul >,
+display(Panel

Agile Developer Prudent OO Devel opment 24

SRP at Module Level

e Can be extended to module level as well

Gui Framework Corglponent Gui Framework
Utilities O\
1 Throw it in there

Gui Framework

Forced to a V 1.20“
Ir change
User J
Of Module
Agile Developer Prudent OO Development 25

SRP affects Reuse

e Lower cohesion results in poor reuse
- My brother just bought a new DVD and a big
screen TV!
- He offers to give me his VCR!
-1 have a great TV and all I need is a VCR
- Here is what I found when I went to pickup!
Tight coupling

Poor Cohesion
Bad for resuse

Disclaimer: Thisslide not
intended to say anything
about the brand of product
shown here as an example!

A@' Developer Prudent OO Development 26

Quiz Time

Y\
N

a
[

Agile Developer Prudent OO Development 27

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

ocCP

LSP

DIP

ISP

Conclusion

A@' Developer Prudent OO Development 28

Nature of code
e “Software Systems change during their life
time”
e Both better designs and poor designs have
to face the changes; good designs are stable

&d o

Agile Developer Prudent OO Development 29
OCP
- 1 1 Furth
Open-Closed Principle Readi ng: (2]

Bertrand Meyer:

“"Software Entities (Classes,
Modules, Functions, etc.) should
be open for extension, but closed
for modification”

A@' Developer Prudent OO Development 30

Good vs. Bad Design

e Characteristics of a poor design:

- Single change results in cascade of
changes

- Program is fragile, rigid and
unpredictable

e Characteristics of good design:
- Modules never change

- Extend Module’s behavior by adding new
code, not changing existing code

Agile Developer Prudent OO Development 31

Good Software Modules

e Software Modules must
- be open for extension
e module’s behavior can be extended
- closed for modification

e source code for the module must not be
changed

Agile Developer Prudent OO Development 32

Looking out for OCP

Piston

Car Engine

e How to make the Car run efficiently with
Turbo Engine ?

e Only by changing Car in the above design

Agile Developer Prudent OO Devel opment 33

Providing Extensibility

‘ Abstract
Car — .
Engine
Aﬁ
Piston Ab &
Engine Pol hism

arethelKey

e A class must not depend on a
Concrete class; it must depend on an
abstract class

Agile Developer Prudent OO Devel opment 34

Strategic Closure

Strategic Closure:
No program can be 100% closed

There will always be changes against which the
module is not closed

Closure is not complete - it is strategic

Designer must decide what kinds of changes to
close the design for.

This is where the experience and problem
domain knowledge of the designer comes in

Agile Developer Prudent OO Development 35

Conventions from OCP
Heuristics and Conventions that arise from
OCP

e Make all member variables private

- encapsulation: All classes/code that depend on my
class are closed from change to the variable names
or their implementation within my class. Member
functions of my class are never closed from these
changes

- Further, if this were public, no class will be closed
against improper changes made by any other class

e No global variables

Agile Developer Prudent OO Devel opment 36

Conventions from OCP...
Heuristics and Conventions that arise from
OCP...
e RTTI is ugly and dangerous

- If a module tries to dynamically cast a base
class pointer to several derived classes, any
time you extend the inheritance hierarchy,
you need to change the module

Not all these situations violate OCP all the time

Agile Developer Prudent OO Devel opment 37

Usage of RTTI - instanceof

e Keep usage of RTTI to the minimal
e If possible do not use RTTI

e Most uses of RTTI lead to extensibility
issues

e Some times, it is unavoidable though
—some uses do not violate OCP either

Agile Developer Prudent OO Devel opment 38

Usage of Reflection

e Reflection allows use to invoke methods
and access objects without compile time
dependency

e Great, let’s use reflection for all calls?!

e Better to depend on an interface rather
than using reflection

e Avoid use of reflection, except for
- Dynamic object creation (abstract factory)

- And in cases where the benefit outweighs
cost and clarity

Agile Developer Prudent OO Development 39

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP

Conclusion

Agile Developer Prudent OO Devel opment 40

Liskov Substitution Principle

Furt her
Readi ng: [2]

e Inheritance is used to realize Abstraction
and Polymorphism which are key to OCP

e How do we measure the quality of
inheritance?

o LSP:
“Functions that use pointers or
references to base classes must be

able to use objects of derived classes
without knowing it”

Agile Developer Prudent OO Development 41

Inheritance A

public/is-a

B
B publicly inherits from (* is-a”) A means:

» every object of type B isalso object of type A
» whats true of object of A isalso of object of B
A represents amore general concept than B

* B represents more specialized concept than A

« anywhere an object of A can be used, an object
of B can be used

Adile Developer Prudent OO Devel opment 42

Behavior

Advertised Behavior of an object
e Advertised Requirements (Pre-Condition)
e Advertised Promise (Post Condition)

Stack and eStack example

Agile Developer Prudent OO Development 43

Design by Contract

Design by Contract
Advertised Behavior of the

Derived class is Substitutable for that of
the Base class

Substitutability: Derived class Services
Require no more and promise no less
than the specifications of the
corresponding services in the base class

Agile Developer Prudent OO Devel opment 44

LSP

“"Any Derived class object must be

substitutable where ever a Base
class object is used, without the
need for the user to know the
difference”

Agile Developer Prudent OO Development 45

LSP in Java?

e LSP is being used in Java at least in two
places

e Overriding methods can not throw new
unrelated exceptions

e Overriding method’s access can’t be more
restrictive than the overridden method
- for instance you can’t override a public

method as protected or private in derived

class
Agile Developer Prudent OO Devel opment 46

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP

Conclusion

Agile Developer Prudent OO Development 47

Nature of Bad Design

e Bad Design is one that is

—Rigid - hard to change since changes
affect too many parts

—-Fragile - unexpected parts break upon
change

—Immobile - hard to separate from current
application for reuse in another

Agile Developer Prudent OO Devel opment 48

Ramifications

Depends |
Controller Tor ATarm Clock

Controller needs an alarm

Clock has it, so why not use it?

Concrete Controller depends on concrete Clock
Changes to Clock affect Controller

Hard to make Controller use different alarm
(fails OCP)

e Clock has multiple responsibilities (fails SRP)

Agile Developer Prudent OO Development 49

Alternate Design

Controller > |Alarm

]
I |

Clock 000 Timer

e Dependency has been inverted

e Both Controller and Clock depend on
Abstraction (IAlarm)

e Changes to Clock does not affect
Controller

e Better reuse results as well
Agile Developer Prudent OO Devel opment 50

DIP

Furt her

e Dependency Inversion Principle r..ging (2

“High level modules should not depend

upon low level modules. Both should
depend upon abstractions.”

“Abstractions should not depend upon

details.

Details should depend upon
abstractions.”

Agile Developer Prudent OO Development 51

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP
Conclusion

Agile Developer Prudent OO Development 52

They should know about abstra

Fat Interfaces

e Classes tend to grow into fat interfaces
e Examples of this can been seen in several APIs
e Less cohesive (fails SRP)

C1

N

A Class

Clientssh

not know thi

C2

asasingleclass
ase classes with cohesive inter faces

Interface of the class

11

C1

—>O_

Agile Developer

A Cl

/

/may be split

—O—
12

C2

Prudent OO Development 53

Growth of an interface

C1

IMicrowave

A few days later,
Client C1 wantsit to notify
(workaholic client™)

“| +cook(time)

+stop()

Microwavel mpl

C2

A few days later,
Client C2 wants it to chime

C1

IMicrowave

Clientsareforced to\
use interfaces they

do not care about.

May result in grester
coupling, dependency
tomorelibraries

“| +cook(time)

+stop()
+chime()
+notify(....)

Agile Developer

Microwavel mpl

C2

All implementations must
carry the weights

Prudent OO Development 54

ISP

e Interface Segregation Principle r..ging (2

¢ "Clients should not be forced to depend
on methods that they do not use”

IMicrowave
C1 > : < c2
“““““ v +cook(time)

SN [Hsop0 /
INotify A | Chimer
+notify(...) +chime()

|M icrowavel mpl 1l |M icrowavel mpl2

Agile Developer Prudent OO Devel opment 55
Quiz Time

Y\
N

a
[

Agile Developer Prudent OO Devel opment 56

Prudent OO Development

Basics

Metrics

Object Copying
Bad Design
DRY
Composition vs. Inheritance
SRP

OCP

LSP

DIP

ISP
Conclusion

Agile Developer Prudent OO Development 57

Conclusion

e Developing with OO is more than
- Using a certain language
- Creating objects
- Drawing UML

¢ It tends to elude even experienced
developers

e Following the principles while developing
code helps attain agility

e Use of each principle should be justified
at each occurrence, however

Agile Developer Prudent OO Devel opment 58

References
1. Effective Java, Joshua Bloch

2. Agile Software Development, Robert Martin
with James Newkirk & Robert Koss

3. The Pragmatic Programmer, Andrew Hunt &
Dave Thomas

4. Java Design, Peter Coad & Mark Mayfield with
Jonathan Kern

5. "Why copying an object is a terrible thing to
do?” (downloadable from URL below)

6. http://www.AgileDeveloper.com/download.aspx

Agile Developer Prudent OO Devel opment 59

