
Java 5 Features - 1

Java 5 Features, 
What's in it for you?

Venkat Subramaniam

venkats@agiledeveloper.com

http://www.agiledeveloper.com/download.aspx

Java 5 Features - 2

Abstract
Abstract A number of new features have been introduced in Java. What benefit do these 

features offer you. Are there issues with using these features. For instance, when 
should you use annotation? The objective of this presentation is not simply to 
introduce you to the features, but to the effective use of these as well.

We will take a close look at a number of features that you will be expected to know 
well when you program using Java 5.

About the Speaker Dr. Venkat Subramaniam, founder of 
Agile Developer, Inc., has trained and mentored 
thousands of software developers in the US, Canada, 
and Europe. He has significant experience in 
architecture, design, and development of software 
applications. Venkat helps his clients effectively apply 
and succeed with agile practices on their software 
projects, and speaks frequently at conferences. 
He is also an adjunct faculty at the University of 
Houston (where he received the 2004 CS department 
teaching excellence award) and teaches the 
professional software developer series at Rice 
University School of continuing studies.
Venkat has been a frequent speaker at No Fluff Just 
Stuff Software Symposium since Summer 2002.



Java 5 Features - 3

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion

Java 5 Features - 4

New Features
• Java 5 has introduced several new 

language and API features

• Most of the change are 
welcome changes

• A few can be abused

• One is a disaster



Java 5 Features - 5

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion

Java 5 Features - 6

Citizens of Java
• Java has two classes of citizens

–Objects and primitives
• You couldn’t mix them together
• What if you want to write a generalized 

API to receive different types?
–Like Invoke method or even collection classes

• You had to wrap the primitive into an 
object
–Predefined objects like Integer (for int), 

Double (for double), etc.
• You have to wrap on send and cast on 

receive



Java 5 Features - 7

Dealing with differences
• Leads to code clutter

• More work for you

• Some what unnatural

• Confuses the heck out of novices

Java 5 Features - 8

AutoBoxing and Unboxing
• Allows you to treat primitives and 

corresponding object types 
interchangeably

• You some what forget the difference as 
you work with the code

• You can send an int where an Integer is 
expected

• You may assign an Integer to an int
• The wrapping, unwrapping is done for 

you as autoboxing and autounboxing



Java 5 Features - 9

+/-
• Realize that the conversion is happening 

still under the hood
–Has performance consequences

• What if Integer reference is null and you 
try to assign it to int
–NullPointerException

• What does == mean now?
–On Integer it is identity comparison and on 

int it is value based comparison, use caution 
when you mix 

• Use it where performance is not critical

Java 5 Features - 10

Java 5 Features

• New Features
• Autoboxing
• for-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion



Java 5 Features - 11

Looping
• How can you loop?

– It depends on what you are looping over
• You can use the good old method:

for(int index = 0; index < arr.length; 
index++) {…}

• Or you may use:
for(

Iterator iter = c.iterator(); 
iter.hasNext(); ) {… iter.next()…}

• Again, we have lived with this clutter
• How about something simpler?

Java 5 Features - 12

for-each
• How about reading it as

for each element X in collection col …
• Syntactically this may look like

foreach(X element in col) // WRONG

• But this would lead to two problems
– Would introduce two new keywords
– May step on the toe of some legacy code

• Smartly avoided with an uglier syntax ☺
for(X element : col) { …

// Each pass through loop, element refers to
// an element in the collection col

}



Java 5 Features - 13

+/-
• It does look simpler, elegant
• But you can’t use all the time
• You can’t use it if you need access to the 

iterator or index it hides
– like to remove an element or set a value in a 

collection using an index

• For you to use for-each, the collection 
must implement a Iterable interface
–This has one method iterator() that returns 

the iterator

Java 5 Features - 14

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion



Java 5 Features - 15

What it was?
• Type whose legal value is from fixed set of 

constants
• ‘C’ enum was omitted from Java
• You want to define a select set of possible 

values
• You wrote

public static final int COFFEESIZE_SMALL = 1;
public static final int COFFEESIZE_MEDIUM = 2;
public static final int COFFEESIZE_LARGE = 3;

• Joshua Bloch has talked about why this is bad 
in “Effective Java”

Java 5 Features - 16

What’s wrong?
• Item #21 “Replace enum constructs with 

classes” in Effective Java
–Not typesafe
–No namespace (how can you have two 

enumerations within same scope?)
–Brittle – errors result from adding new ones, 

may conflict with existing ones
–Not printable – how to nicely print a value of 

enum?

• Solution? – typesafe enum pattern



Java 5 Features - 17

typesafe enum pattern
• Joshua’s recommendation:

public class CoffeeSize
{

private final String theName;
private CoffeeSize(String name)

{ theName = name; }
public String toString() 

{ return theName; }
public static final CoffeeSize SMALL 

= new CoffeeSize(“Small”);
public static final CoffeeSize MEDIUM 

= new CoffeeSize(“Medium”);
public static final CoffeeSize Large 

= new CoffeeSize(“Large”);
}

Java 5 Features - 18

Advantages
• No way for you to create objects of this class

– You only have objects you have exported

• You can’t extend this class since the constructor is 
private

• Provide compile-time type safety
– Except you may pass a null

• Provides namespace for defining multiple enums with 
names across enums
– Like Small CoffeeSize and Small ShirtSize

• You can add constants without breaking client code
• Printable as you desire by overriding toString() 
• Can add methods
• You can add the enumerations to a collection if you 

want to get a list of all values



Java 5 Features - 19

Minor Disadvantages
• Hard to aggregate like Small | Large
• Can’t use switch on them – you need to 

resort to if/else statements
• You are loading classes at runtime – may 

be an issue for resource constrained 
devices

• Pretty minor concerns, so why not use it?

• Verbose, lot of work to write
• Wouldn’t it be nice if this is done for us?

Java 5 Features - 20

Enum
• Looks like C/C++ support - only better

enum CoffeeSize { SMALL, MEDIUM, 
LARGE; }

• Behind the scene enum type generation
• They are comparable and serializable
• Has values() method that returns array of 

all values of enum type in order of 
declaration

• Can use switch if you like



Java 5 Features - 21

Enhancing enum
• You may add data and behavior to an enum

• You may write a constructor that takes 
arguments and declare const values with 
values for the parameters

• Constant specific methods
– You may declare a method abstract in the enum
– May override the method in each constant value of 

enum

Java 5 Features - 22

enum specific classes
• java.util.EnumSet

–High performance implementation for enums
–Stored internally as bit vector
–Provides iterator over range of enum values
– range() method
–of() method creates aggregation of enum

values

• java.util.EnumMap
–Allows you to map enum to values



Java 5 Features - 23

+/-
• enum are very powerful
• Provide type safety

• Can be confusing however if you do some 
of the fancy things with it

Java 5 Features - 24

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion



Java 5 Features - 25

Sending variable number of args
• Two reasons you forced you to send an 

array to a method

–You wanted to pass a primitive type by 
reference

–You wanted to send variable number of 
arguments

• Not elegant, how about something 
simpler

Java 5 Features - 26

varargs
• varargs is a sugar coating that hides the 

creation of array for you

• public static object max(
Object… arguments)

• Ellipsis is used to say that the argument 
may be passed as an array or a sequence 
of values
–Only the trailing argument can have ellipsis



Java 5 Features - 27

Nice work
• Ellipsis in C++ is horrible

–Hard to use
–Leads to significant issues with determining 

the type correctly
• Java’s implementation is a lot more 

civilized
• You may mix varargs with autoboxing as 

well
• Reflection API methods like invoke accept 

varargs
• System.out.printf

Java 5 Features - 28

+/-
• Use it when it makes sense to provide 

flexibility of receiving variable number of 
arguments

• You loose some compile time type safety
• If you are debating between say 3 and 4 

parameters, you may consider 
overloading instead

• If you are using varargs, then don’t 
overload – leads to confusion



Java 5 Features - 29

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion

Java 5 Features - 30

Metadata
• You want to communicate certain intent in your 

code
– Like serializable, Cloneable, etc.

• Use of interface and inheritance is not the 
smartest idea

• Tagging interfaces bloat code
– Intent is not clear, more of a work around, using 

that inheritance hammer 
– Can’t help with anything more granular than 

methods – remember transient, you have to invent 
keywords, not something developers can do

• How about side files like deployment 
descriptors
– Error prone, messy, gets too complex, hard to keep 

up with



Java 5 Features - 31

Metadata Facility
• Annotation brings ability to annotate or 

color code for general purpose

• Annotation types can be defined
• Annotation declaration can be placed
• Annotation can be identified 

programmatically

Java 5 Features - 32

Annotation Type Declaration
• Use @interface to declare
• Each method declares an element

–No parameters
–No throws
–No implementation
–Return type must be primitives, String, 

Class, enum, annotation, or array of these
–Can have default values

• Marker annotation has no methods
• If single element, name it value



Java 5 Features - 33

Annotation Declaration
• Used like modifiers
• Convention to place it before the other 

modifiers like public, static, etc.
• Has parenthesized list of name value pair
• For marker annotation, no parenthesis
• For single valued annotation, no need for 

the “elementName =“ – simply provide 
the value

Java 5 Features - 34

Meta-Annotation
• You want to say a few things about the 

annotation itself
–Where it can be used, how, etc.

• Retention says whether the VM retains it 
for reflective access at runtime

• Target’s ElementType specifies where the 
enum can be used: Class, Method, etc.



Java 5 Features - 35

Fetching Annotation Info
• Reflection API can be used to explore the 

Annotation details at runtime 
programmatically

• isAnnotationPresent()

Java 5 Features - 36

apt
• Annotation Processing Tool

• Command line utility for annotation 
processing

• Support API with reflection

• Helps with development of code by 
offering code generation and compilation



Java 5 Features - 37

+/-
• Annotation very powerful
• Better than using tagging interfaces

• If intent is to affect documentation, use 
javadoc

• Otherwise consider use of annotation

• Learn if annotation is the right thing for 
what you want to specify, however

Java 5 Features - 38

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion



Java 5 Features - 39

How do we use static methods?
• To use static methods, we prefix the call 

with class name
–Runtime.getRuntime()

• Disadvantage: The code is readable (pun 
intended)

• Wouldn’t it be cool to simply call
getRunTime()
and let the programmer scratch the head 
asking where the heck this came from?

Java 5 Features - 40

Static Import can do that for you
• Allows you to call static methods without 

prefixing with class names
• You import, hum, statically, the type that 

has the static members
import static java.lang.System.out;

or
import static java.lang.Runtime.*;

• Very similar in rules/behavior as regular 
import is



Java 5 Features - 41

+/-
• You may use it when you need frequent 

access to a select set of static members

• Makes the code less readable in my 
pinion

• Some organization do not encourage use 
of import – this makes it worse

• May lead to job security for the writer?

Java 5 Features - 42

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion



Java 5 Features - 43

Generics
• Remember the good old Templates in 

C++?
• Java went the route of using Object as 

generic type
–Problem is when you pull some thing out of a 

collection, how do you call methods on it?
–Only after casting it to the correct type right
–Much worst if you are dealing with primitive 

types
• These have to be boxed and unboxed

• Having collections that are type safe will 
eliminate this issue
–Back to what C++ originally provided ☺

Java 5 Features - 44

Need?!
• This is highly debatable
• First question is do we really need a type 

safe language
–What about dynamically typed languages

• If we used dynamically typed languages, 
then we do not really care about 
generics!

• But then, we are talking about Java here
• So, how do we solve the issues with such 

a strongly typed language



Java 5 Features - 45

+/-
• Easier to write
• Intended to provide type safety
• Nice features like extends and super to control 

the type for parametrized type
• No change to JVM or byte code for generics
• Good news – compatible with legacy code
• Bad news – you loose type safety
• More about generics in

– Good, Bad, and Ugly of Java Generics talk
– Three part article at 

http://www.agiledeveloper.com/download.aspx

Java 5 Features - 46

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion



Java 5 Features - 47

Other Features
• StringBuilder

– StringBuffer eliminates object creation overhead, but has 
synchronization overhead

– StringBuilder removes that overhead
• Client vs. Server side differences in garbage collection, 

more adaptive collection
• Improved Image I/O for performance and memory 

usage
• Reduced application startup time and footprint using 

shared archive
• Enhancement to Thread Priority
• Ability to get stack trace for a thread or all threads
• UncoughtExceptionHandler on a Thread
• Improved error reporting on fatal exceptions
• System.nanoTime() for nanoseconds granularity for 

time measurements

Java 5 Features - 48

Other Features…
• ProcessBuilder

– Easier than Runtime.exec() to start process
• Formatter and Formattable provide ability to 

format output in printf like style
• Scanner for easier conversion to primitive types 

– based on regex
• java.lang.instrument allows byte code 

enhancement at runtime to instrument code
• Collections Framework has Queue, 

BlockingQueue, and ConcurrentMap interfaces 
and implementations. Some classes modified to 
implements new interfaces

• Reflection API supports annotation, enum. 
Class has been generified

• System.getenv() undeprecated!



Java 5 Features - 49

Quiz Time

Java 5 Features - 50

Java 5 Features

• New Features
• Autoboxing
• For-each
• enum
• Varargs
• Annotation
• Static Import
• Generics
• Other features
• Conclusion



Java 5 Features - 51

Love-hate of features

• Autoboxing ☺
• For-each ☺
• enum ☺

• Varargs ☺
• Annotation ☺
• Static Import 
• Generics ….

Java 5 Features - 52

References

Please fill out your evaluations!

1. http://java.sun.com

2. Download examples/slides from
http://www.agiledeveloper.com/download.aspx


