
Functional
Programming for

Java Programmers
spkr.name = 'Venkat Subramaniam'
spkr.company = 'Agile Developer, Inc.'
spkr.credentials = %w{Programmer Trainer Author}
spkr.blog = 'agiledeveloper.com/blog'
spkr.email = 'venkats@agiledeveloper.com'

Abstract

Most interest around Functional Programming (FP) has been
academic until recently. Recent commercial languages are
beginning to exploit FP features. Knowing more about FP
will not only help us make better use of these features, but to
exploit those. In this session we will take a close look at FP.

We will look at What is FP, Strength and weakness of FP, FP
languages for Java programmers, Examples that you can use
today, Thinking in FP

2

Agenda

What’s FP?

Why FP?

Features of FP

Pattern Matching

List Comprehension

Concurrency

Running on JVM

Conclusion

3

Where are we?

We’re used to Structured and OO

What are those?

Remember Structured programming emphasizes
goto-less programming

goto still happen behind the scene, hidden from
us

OO emphasizes encapsulation and polymorphism

4

What’s Functional
Programming?

It’s a different way of programming

It is

Assignment-less

Higher level of abstraction

Expressions with no side effects

Enables massing parallelism due to execution
order independence

5

Agenda

What’s FP?

Why FP?

Features of FP

Pattern Matching

List Comprehension

Concurrency

Running on JVM

Conclusion

6

But, Why FP?
We’re being dragged into it

Dual core processors

Multi-core processors

High performance demand

We need software to

function correctly

Take performance advantage of hardware
capabilities

Need higher level of abstraction
7

Intel Announced Qurd-core (By popular Demand!)

What about familiar
languages?

What about languages like Ruby, Groovy,...?

These are OO languages (we will look at these,
but keep in mind, these are not functional langs)

They have some features that have been
borrowed from functional programming (like
closures)

So, you’re already using it to some extent

These certainly bring the power, but we need
more to tackle the evolving complexities

8

Agenda

What’s FP?

Why FP?

Features of FP

Pattern Matching

List Comprehension

Concurrency

Running on JVM

Conclusion

9

But, What’s really FP?

At the core of Functional Programming is higher
order functions

Works with Functional Abstraction and
Mathematical Logic

10

What’s a Function?

Function maps input to output

But, what about algorithm, performance,...

OK, function is what it does and how it does it

A pure function does not perform any assignment
operations—implicitly or explicitly

Independent evaluation order of subexpressions
allow us to exploit multiprocessors

Referential Transparency—allows elimination of
common subexpressions

11

fInput Output

Equations
Imperative programs define variables explicitly—
set values to variables—easier to program

Functional programming languages do so
implicitly—easier for formal specification

a Ξ 3 Explicitly defines a to be 3

a can now be substituted by 3

x = 2x - 3 Implicitly defines x to be 3

y = 2a + 5 => 2 * 3 + 5 => 11

x = 2a - 7 and a = x - 7; x and a implicitly defined
using each other—x is 21 and a is 14.

12

Functions

Functional programming languages try to express
functions as recursions

LISP showed how significant programs can be
expressed as pure functions on list structures

Promotes passing functions as arguments to
functions-Higher Order Functions

Functions operate on other functions without
assignments or side effects

13

Higher Order
Functions in Erlang

14

Similar Concept in
Groovy

15

Expressing Functions
As Recursion

16

Expressing Functions
As Recursion

17

What’s Going on Here?

Pattern Matching is at work

When you call fib(3), it calls fib(N)

When fib(N) calls fib(1), it ends up in fib(1) method
instead of fib(N)

18

Let’s Explore Pattern
Matching Further

19

Pattern Matching and
Recursion at Play

20

Curried Function
Transforming a function that takes multiple
arguments into a function that takes a single
argument

f(X, Y) → Z is transformed into

curry(f): X → (Y → Z)

Makes it easier to express

Some languages have these built in

Named after Haskell B. Curry

Actual work by Moses Schönfinkel and
Friedrich Ludwig Gottlob Frege

21

Curried Closure in Groovy

22

λ-Calculus
Formal system, introduced by Alonzo Church and Stephen Kleene, for
function definition, function application, and recursion

<λ-term> ::= <variable>

| (λ<variable>< λ-term>) function definition

| (<λ-term>< λ-term>) function application

<variable> ::= x | y | z ...

For example (λx(λy((+x)y))) for f(x, y) = x + y

Formalization for computability using transformations and
substitutions

Lead to Church-Turing theorem that it is impossible to decide algorithmically if
general statements in arithmetic are true or false (Entscheidungsproblem or decision
problem)

“A little bit of syntax sugar helps you to swallow the λ-calculus”—Peter J. Lardin 23

Agenda

What’s FP?

Why FP?

Features of FP

Pattern Matching

List Comprehension

Concurrency

Running on JVM

Conclusion

24

Types

Atoms are numbers, booleans, strings, non-
composites, indivisible

Sequences are composites and dividable

if {x1, x2, ..., xn} ∈ T, [x1, x2, ..., xn] ∈ [T]

An abstract types is specified in terms of abstract
values without regard to any specific concrete
implementation

25

Operations on Sequences

first: [x1, x2, ..., xn] → x1

rest: [x1, x2, ..., xn] →[x2, ..., xn]

prefix: x, [y1, y2, ..., yn] →[x, y1, y2, ..., yn]

...

26

Operations on Sequences

27

Assignments in FPLs
X = 3

Appears like assignment, but it’s not

X is first unbound. When you set it first time, it is bound

What is Z = X + 1?

If Z is not bound, Z is given value of 4.

If Z is bound, checks if Z is equal to 4.

{W, vapor} = {water, vapor}.

W (variable) is bound to water (atom) in this case

28

Agenda

What’s FP?

Why FP?

Features of FP

Pattern Matching

List Comprehension

Concurrency

Running on JVM

Conclusion

29

List Comprehension

Pattern matching helps make code concise

List comprehension takes that one step further

Here is an example to double elements in an array

[X * 2 || X <- L]

Says double element X where X is a member of sequence L

Has generators and filters

Generator helps generate sequence, filter helps limit or select elements

30

Count Even Using List
Comprehension

31

Pick Even-Odd Using List
Comprehension

32

Sort Using List
Comprehension

33

Count Primes Using List
Comprehension

34

Agenda

What’s FP?

Why FP?

Features of FP

Pattern Matching

List Comprehension

Concurrency

Running on JVM

Conclusion

35

How can it help
Concurrency?

Mutable and Non-mutable State

Memory area that can be modified is mutable state

Functional programming languages prefer non-mutable states

Shared memory is not modified

No locking is needed for multiple processors to access these

Promotes concurrency

36

Spawning in Erlang

37

Cost of spawn

38

Agenda

What’s FP?

Why FP?

Features of FP

Pattern Matching

List Comprehension

Concurrency

Running on JVM

Conclusion

39

FP on JVM

Languages like Groovy and JRuby have some features that are
borrowed from Functional Programming

Haskell is a functional programming language

Jaskell is a version of Haskell that interoperates with Java and runs on
JVM

JSR 233 provides engine to execute Jaskell on JVM

40

Usign Jaskell

41

Agenda

What’s FP?

Why FP?

Features of FP

Pattern Matching

List Comprehension

Concurrency

Running on JVM

Conclusion

42

Quiz Time

43

Conclusion

Functional Programming has strong mathematical underpinning

Provides higher level of abstraction

Functions are treaded as first class citizens

Higher order functions provide greater flexibility

Subexpression independent evaluation orders and substitution paves
way for greater flexibility for concurrency.

44

References
http://www.erlang.org

http://jaskell.codehaus.org

http://www.haskell.org

45

Thank You!

http://www.agiledeveloper.com — download

46

You can download code examples from the link below

