
Interface Based Programming!
Venkat Subramaniam

venkats@durasoftcorp.com
http://www.durasoftcorp.com

���������
When I ask people why they want to use the object paradigm, invariably one of the top
answers is Reusability. Yet, how much of the code we write is reusable? Are we writing
code that lends itself to reusability? In this article, we will talk about how interface based
programming truly helps us to develop reusable and extensible code.

��	���
�����	���	��
Let's say I am asked to write a program that will monitor a door. If the door is left
unattended for a period of 10 seconds, the program needs to raise an alarm. This door
may be used in a secure facility like a Bank or an office where it should be monitored
very closely.

This should not be a difficult task. Throw-in some quick Java code with multithreading,
and the job is done. Here is a sample of the code that will do just that.

//Door.java
public class Door
{
 private boolean closed = true;

 public void open()
 {
 closed = false;
 // Interface with door API at this point.

 Alarm anAlarm = new Alarm(this, 10);
 }
 public void close()
 {
 closed = true;
 // Interface with door API at this point.
 }

 public boolean isClosed() { return closed; }
}

// Alarm.java
public class Alarm
{
 public Alarm(final Door aDoor, final int seconds)
 {
 Thread monitoringThread = new Thread(
 new Runnable()
 {
 public void run()
 {
 try

 {
 Thread.sleep(
 seconds * 1000);
 if (!aDoor.isClosed())
 raiseAlarm();
 }
 catch(Exception e)
 {
 // return if thread
 // interrupted. Other
 // actions may be
 // necessary, however...
 // not the focus of
 //problem here.
 }
 }
 }
);
 monitoringThread.start();
 }

 public void raiseAlarm()
 {
 // Real code to play alarm goes here.
 // As a sample to illustrate, I am poping a dialog.
 javax.swing.JOptionPane.showMessageDialog(null,
 "Door left open, alarm sounded");
 }
}

// Tester.java
import javax.swing.*;
import java.awt.event.*;

public class Tester extends JFrame
{
 private JButton doorButton;
 private Door theDoor;

 public void frameInit()
 {
 super.frameInit();

 theDoor = new Door();
 doorButton = new JButton("Open Door");

 getContentPane().add(doorButton);

 doorButton.addActionListener(
 new ActionListener()
 {
 public void
 actionPerformed(
 ActionEvent actionEvent)
 {
 if (theDoor.isClosed())
 {

 theDoor.open();
 doorButton.setText(
 "Close Door");
 }
 else
 {
 theDoor.close();
 doorButton.setText(
 "Open Door");
 }
 }
 }
);
 }

 public static void main(String[] args)
 {
 final JFrame frame = new Tester();

 frame.setBounds(100, 100, 500, 400);
 frame.setVisible(true);

 frame.setDefaultCloseOperation(DISPOSE_ON_CLOSE);

 frame.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosed(WindowEvent e)
 {
 System.exit(0);
 }
 }
);
 }
}

This program will display a Dialog with a Door Open button. Click on it and wait for a
little over 10 seconds, then you will see an alarm message being displayed. This code
works and we can always tune it to the specific door access API that may be available for
us to use. However, let’s take a minute to look at the class diagram for this code.

The first observation is that there is a cyclic dependency between the two classes.
Further, the code fails Open-Closed Principle2 as well. A couple of months later, let’s say
someone working within the same organization or group is asked to monitor say a
Reaction (some thing like a chemical or nuclear reaction). If the reaction is not under
control within certain duration of time, then an alarm needs to be raised. Wouldn’ t it be
nice if this person can reuse my Alarm?

AlarmDoor

We should be able to give this Alarm code to any developer who has a need for it.
However, this developer will then have to modify the code of the Alarm to make it work
with the Reaction. Of course, while doing this, if this developer calls me and says there is
some problem with the code, I would find that her code is different from my code. She
changed my code, sorry no support for her!

Another alternative is to use the Alarm class without changing the code. This may be
achieved by inheriting the Reaction from the Door! That hurts. It is very poor modeling,
some thing that is purely done in order to fit what is available in the existing code.

When I first set out to write the code (and when you first set out to read it), it should have
occurred to me that after all an Alarm is monitoring the Door, and it is interested in a
small part or detail of the door and not the door in its entirety. If the coupling of the
Alarm to the Door can be removed, then the Alarm would become more reusable. Higher
coupling leads to lesser reusability in a system.

�����	����
���
��	������	�����

Let’s try to break the coupling between the Alarm and the Door. One way to do that is to
abstract out, into an interface, the details that the Alarm is interested in the Door. How
about creating an interface called MonitoredEntity for this purpose. A MonitoredEntity
will simply abstract and represent an object that can be monitored by an alarm. Here is
the code after this change.

//MonitoredEntity.java
public interface MonitoredEntity
{
 public boolean isOK();
}

// Door.java
public class Door implements MonitoredEntity
{
 private boolean closed = true;

 public void open()
 {
 closed = false;
 // Interface with door API at this point.

 Alarm anAlarm = new Alarm(this, 10);
 }
 public void close()
 {

 closed = true;
 // Interface with door API at this point.
 }

 public boolean isClosed() { return closed; }

 public boolean isOK() { return isClosed(); }
}

// Alarm.java
public class Alarm
{
 public Alarm(final MonitoredEntity theMonitored, final int seconds)
 {
 Thread monitoringThread = new Thread(
 new Runnable()
 {
 public void run()
 {
 try
 {
 Thread.sleep(seconds * 1000);
 if (!theMonitored.isOK())
 raiseAlarm();
 }
 catch(Exception e)
 {
 //…
 }
 }
 }
);
 monitoringThread.start();
 }

 public void raiseAlarm()
 {
 //…
 }
}

The result of this code change is shown in the following class diagram:

Note that the cyclic dependency has been removed now in this case. While the Door
depends on the Alarm, the Alarm depends on some thing that is abstract and not concrete.
Instead of the Alarm depending on the concrete class Door, both the concrete classes
(Door and Alarm) now depend on some thing abstract (MonitoredEntity). This concept is
addressed in the Dependency-Inversion Principle3.

If some one wants to use the Alarm in their application, then we now have to give them
only two files – the Alarm.class and the MonitoredEntity.class (or one jar with these two
files in it). The source code does not have to be distributed, and so there is no risk of that
being modified. The developer who wants to use the Alarm can simply implement the
MonitoredEntity interface for the Reaction class. Now, Reaction is a MonitoredEntity,
which sounds a lot better and more sensible than Reaction is a Door.

One logical question here is what if the Reaction is an existing class and you can’t
modify it to implement the MonitoredEntity interface? The Adapter Pattern1 comes to
your rescue here. You may write an object adapter that will implement the
MonitoredEntity interface and it will route the call isOK() to the Reaction class (the
adaptee). Similarly, the adapter can take care of properly invoking the Alarm when
needed.

The UML class diagram in this case looks like this:

Door

MonitoredEntity

Alarm

�����	����
���
��	�
���	�����
Now that we have removed the cyclic dependency and made the Alarm more reusable,
what can we do further? The Door (and the Reaction) depends on the Alarm. What if we
decide to use another kind of alarm, say a visual alarm instead of an audio alarm? One
way to fix that is to let the Door depend on some thing abstract as well. Let’s call this a
MonitoringEntity. The resulting model will look like the following:

Of course, originally the Door was creating an object of the Alarm class. Now we have
both Alarm and VisualAlarm. How would the Door then create an object of the Alarm, if
it does not know which one to use? This can be solved using the Abstract Factory
Pattern1. It is even easier to achieve this in Java than in C++. The concept of reflection
allows us to create an object of a class, given its class name. Here is how the Door’s open
method may be implemented:

 public void open()
 {
 closed = false;
 // Interface with door API at this point.

DoorHealth
Monitor

Reaction Alarm

MonitoringEntityMonitoredEntity

VisualAlarm

Door

MonitoredEntity

Health
Monitor

Reaction Alarm

 try
 {
 Class theMonitoredEntityClass =
 Class.forName(
 System.getProperty("TheMonitoringEntity"));
 MonitoringEntity monitor =

 (MonitoringEntity) theMonitoredEntityClass.newInstance();
 monitor.setMonitoredEntity(this);
 monitor.setMonitoringTime(10);
 monitor.startMonitor();
 }
 catch(Exception e)
 {
 // Handle this one as appropriate
 }
 }

Note that the Door is getting the name of the Alarm class (like VisualAlarm,
AudioAlarm, Buzzer, etc.) from a system property called TheMonitoringEntity. It then
creates an object of that type using the newInstance() method of the java.lang.Class class.

��	���	�	�
�
�	�	�	����	��	����
���
One tendency for people who are getting into object modeling is to over abstract the
system. They start building a hierarchy of classes and over do it. The result is a system
that is very complicated and difficult to maintain. Surely, the objective of OO paradigm is
not to complicate the system and render it difficult to work with. One has to apply one’s
judgment in developing an object model. Providing extensibility and building a hierarchy
should come from anticipating the changes in a system. One has to evaluate the likely
hood of such changes in the requirements or use/reuse of classes. Planning for
extensibility without these in mind would lead to inefficiency as well.

�������
���
Reusability does not come from merely using an object-oriented programming language.
It comes from better modeling. A better system is one that has a layer of abstraction and a
layer of concreteness. Dependencies should generally run vertically from the concrete
layer to the abstract layer, and not horizontally between concrete classes.

�������

1. Erich Gamma, et. al., Design Patterns, Elements of Reusable Object-Oriented
Software, Addison-Wesley, Boston, MA, 1994.

2. Robert C Martin, The Open-Closed Principle, C++ Report, 1996.
http://www.objectmentor.com/resources/articles/ocp.pdf.

3. Robert C Martin, The Dependency-Inversion Principle, C++ Report, 1996.
http://www.objectmentor.com/resources/articles/dip.pdf.

