
Agile Developer, Inc. 1 of 8 http://www.agiledeveloper.com

enums
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
enums are not new to programming–we’ve used these in different languages. However,
each language handles enums differently. In this article, we discuss some of the problems
with enums in general, and in specific to earlier versions of Java, and show how Java 5
has by far provided a better solution.

From Adjectives
In object modeling, we generally consider nouns to represent classes and verbs the
relationship between them. Adjectives, on the other hand, represent a set of listed values
or enumeration of values– or enums for short. For instance, when ordering coffee if we
say Small Cup or Large Cup, we have different sizes–Small, Medium, Large–as
enumerated list of values. enums are used to represent these select list of values.
However, as programmers, we often expect not only to list, but to restrict the values to
the select list.

enum in 'C'
enum in C/C++ was a mere collection of numbers. From the modeling point of view, they
gave us the concept of an enumerated list of values. Under the hood, these were just int
data types. Furthermore, you could run into name collision between enums. For instance,
if you define enum ShirtSize { Large }; and enum CoffeeSize { Large };, you
will get an error that Large is being redefined. There are other problems with enums as
well. enums were not directly supported in earlier versions of Java, however, for most
part, problems with enums in C/C++ were largely carried over to the workarounds used
in Java.

enum in pre-Java 5
Java did not provide any support for enums directly. The often used workaround is to
define an interface with final fields for enumerated values as in:

public interface ShirtSize
{
 public static final int Small = 10;
 public static final int Medium = 20;
 public static final int Large = 30;
 public static final int XLarge = 40;
 public static final int XXLarge = 50;
}

public interface CoffeeSize
{
 public static final int Small = 1;
 public static final int Medium = 2;
 public static final int Large = 3;
}

Agility

Agile Developer, Inc. 2 of 8 http://www.agiledeveloper.com

public class Test
{
 public static void orderCoffee(int size)
 {
 System.out.println("Order received for: " + size);
 }

 public static void main(String[] args)
 {
 orderCoffee(CoffeeSize.Small);
 orderCoffee(CoffeeSize.Large);

 orderCoffee(5); // Hum
 orderCoffee(ShirtSize.XLarge); // Hum
 }
}

Output from the above program is:

Order received for: 1
Order received for: 3
Order received for: 5
Order received for: 40

There are a number of problems with this approach. Jashua Bloch1 has discussed this in
detail in Item #21 "Replace enum construct with classes."

• enums defined as above are not typesafe. You can’t restrict the value being passed
for CoffeeSize (in the above example I was able to send an invalid 5 and
ShirtSize.XLarge to a method that expects CoffeeSize).

• No namespace concept, you can’t define two enumerations with the same set of
names but with different intent within the same scope. The workaround for this is
to define the final fields within a separate interface as above.

• It’s brittle–adding new values to an enum may conflict with existing ones.
Assume that the CoffeeSize interface above is modified so that Small is given a
value of 0 instead of 1 and we introduce another final field Standard with a value
of 1. Now if we compile CoffeeSize, but don’t recompile Test, what happens?
You would want the first call to orderCoffee() to receive a 0, but instead it still
receives a 1. Reason–when Test is compiled, CoffeeSize.Small is replaced by a
constant value of 1 as can be seen from the display of bytecode for the main()
method of the Test class (obtained using javap –c Test):

public static void main(java.lang.String[]);
 Code:
 0: iconst_1
 1: invokestatic #10; //Method orderCoffee:(I)V
 4: iconst_3
 5: invokestatic #10; //Method orderCoffee:(I)V
 8: iconst_5
 9: invokestatic #10; //Method orderCoffee:(I)V
 12: bipush 40
 14: invokestatic #10; //Method orderCoffee:(I)V

Agility

Agile Developer, Inc. 3 of 8 http://www.agiledeveloper.com

 17: return

• Not printable–within the orderCoffee() method instead of printing 1, 3, etc.
how do we print nicely Small, Large, etc. without having to use ugly condition
statements?

Another problem with the above approach is the intent is not explicit. We have used
enumeration using static final fields as a workaround.

typesafe enum pattern
Bloch recommends the use of typesafe enum pattern. Declare the enums as a separate
class and enum values as instances of this class as shown in the example below:

public class CoffeeSize
{
 private final String theName;

 private CoffeeSize(String name)
 {
 theName = name;
 }

 public String toString() { return theName; }

 public static final CoffeeSize SMALL = new CoffeeSize("Small");
 public static final CoffeeSize MEDIUM = new CoffeeSize("Medium");
 public static final CoffeeSize LARGE = new CoffeeSize("Large");
}

public class Test
{
 public static void orderCoffee(CoffeeSize size)
 {
 System.out.println("Order received for: " + size);
 }

 public static void main(String[] args)
 {
 orderCoffee(CoffeeSize.SMALL);
 orderCoffee(CoffeeSize.LARGE);

 //orderCoffee(5); // Error
 //orderCoffee(ShirtSize.XLarge); // Error
 }
}

Output from the above program:

Order received for: Small
Order received for: Large

The constructor of the CoffeeSize class is declared private. The toString() method
returns a printable name for the enum. SMALL, MEDIUM, and LARGE are declared as

Agility

Agile Developer, Inc. 4 of 8 http://www.agiledeveloper.com

instances of CoffeeSize. This approach has eliminated most of the problems mentioned
in the previous section. It has several advantages:

• You can’t create objects of the enum type explicitly since the constructor is
private

• You have compile time type-safety (as in the above example, you get an error if
you try to pass an invalid 5 or ShiftSize.XLarge).

• Not brittle, you can add constants without breaking existing code. If you introduce
a CoffeeSize Standard, but don’t recompile Test, the output is still correct.

• The enum is printable, you can decide what you like to print when an enum is use
in println() method.

• Furthermore, you can add methods to your enum class and also you can have a
collection of enums to work with a list of values, if you desire.

This approach still does not fully address the concern we raised in the previous section
about the lack of intent and expressiveness. There are other disadvantages as well:

• How do you specify you would like either Small or Large as in Small | Large?
• You can’t use a switch statement on enum values, instead you are forced to use

if/else statements.
• You still have to worry about Serialization and Deserialization!
• How do you handle comparison of two enums? More code needs to be written for

that.
• Result of all these considerations–a lot more effort, for you the programmer, to

write enums.

Wouldn’t it be nice if enums were first class citizens and directly handled by the
language? Then we don’t have to put much effort to create them and that would promote
good practices as well. Enter Java 5.

enum in Java5
enum2 is directly supported in Java 5 (even though introducing the new keyword enum has
caused some issues with exiting code). At first sight, it looks like enum in C/C++, but
only better. Behind the scene, enums are converted into classes, classes that handle the
issues mentioned above. They are comparable, serializable, you can use switch
statement on them, you can easily get a list of values, and more.

You can add methods, you can define behavior for enum, you can write different
constructor to initialize it, and you can customize the methods for specific enum values.

You can write enums that are pretty simple or more complex (or more complicated!) as
you desire.

A Simple enum
Let’s take our CoffeeSize and orderCoffee() example to Java 5.

Agility

Agile Developer, Inc. 5 of 8 http://www.agiledeveloper.com

public enum CoffeeSize {SMALL, MEDIUM, LARGE};
public class Test
{
 public static void orderCoffee(CoffeeSize size)
 {
 System.out.println("Order received for: " + size);
 }

 public static void main(String[] args)
 {
 orderCoffee(CoffeeSize.SMALL);
 orderCoffee(CoffeeSize.LARGE);

 System.out.println("Available sizes are:");
 for(CoffeeSize size : CoffeeSize.values())
 {
 System.out.println(size);
 }
 }
}

Output of the above program is:

Order received for: SMALL
Order received for: LARGE
Available sizes are:
SMALL
MEDIUM
LARGE

values() is a convenience method that returns an iterator on the values of enum.

java.util.EnumSet
 In the above example, we obtained all possible values for CoffeeSize. What if we want
only a select few values within a range? The EnumSet class comes to help.

Consider the following example:

public enum DaysOfWeek {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY}

import java.util.EnumSet;

public class Test
{
 public static void main(String[] args)
 {
 System.out.print("Work days are: ");
 for(DaysOfWeek day :

EnumSet.range(DaysOfWeek.MONDAY, DaysOfWeek.FRIDAY))
 {
 System.out.print(day + " ");
 }
 }

Agility

Agile Developer, Inc. 6 of 8 http://www.agiledeveloper.com

}

We have defined a DaysOfWeek enum which has the days of the week. Assume we are
interested in listing only the work days of the week (which may be a null set for some
very fortunate people!). The range() method of the EnumSet allows us to do just that.
The output of the above program is:

Work days are: MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

Customizing enums
We can customize enums further as shown in the example below:

public enum Methodologies
{
 Evo(5),
 XP(21),
 Scrum(30);

 private int daysInIteration;
 Methodologies(int days)
 {
 daysInIteration = days;
 }

 public void iterationDetails()
 {
 System.out.println(this + " recommends " +

daysInIteration + " days for iteration");
 }
}

public class Test
{
 public static void main(String[] args)
 {
 for(Methodologies m : Methodologies.values())
 {
 m.iterationDetails();
 }
 }
}

In this example, we’ve defined Methodologies as enum and specified Evo, XP, and Scrum
as possible values. We’re interested in the differences in the duration of iteration of each
of these methodologies. The private field daysInIteration is assigned a value within
the constructor. We’ve also added a method iterationDetails() which displays the
duration information for the specific methodology. The output from the above program
is:

Evo recommends 5 days for iteration
XP recommends 21 days for iteration
Scrum recommends 30 days for iteration

Agility

Agile Developer, Inc. 7 of 8 http://www.agiledeveloper.com

Overriding methods
You can also override methods in enums to provide different implementation for each
enum value. Let’s consider an Activity of the day enum which defined different days of
the week and specific activities for each day:

public enum ActivityOfDay
{
 SUNDAY
 {
 public void action()
 {
 System.out.println("Relax");
 }
 },

 MONDAY
 {
 public void action()
 {
 System.out.println("Watch Football");
 }
 },

 TUESDAY
 {
 public void action()
 {
 System.out.println("Swimming");
 }
 },

 WEDNESDAY
 {
 public void action()
 {
 System.out.println("Music");
 }
 },

 THURSDAY
 {
 public void action()
 {
 System.out.println("Tennis");
 }
 },

 FRIDAY
 {
 public void action()
 {
 System.out.println("Dinner");
 }
 },

 SATURDAY

Agility

Agile Developer, Inc. 8 of 8 http://www.agiledeveloper.com

 {
 public void action()
 {
 System.out.println("Movie");
 }
 };

 public abstract void action();
}

public class Test
{
 public static void main(String[] args)
 {
 System.out.println("Activity during the week");
 for(ActivityOfDay day : ActivityOfDay.values())
 {
 System.out.print(day + " - ");
 day.action();
 }
 }
}

In the above example, we have an abstract method in the AcitvityOfDay enum. This
abstract method is being overridden for each enum value SUNDAY, MONDAY, etc. The
action() method doesn’t have to be abstract. You can provide an implementation and
selectively override it for specific enum values, if you desire. In such case, where you
don’t override it would use the implementation provided in the enum. The output from the
above program is:

Activity during the week
SUNDAY - Relax
MONDAY - Watch Football
TUESDAY - Swimming
WEDNESDAY - Music
THURSDAY - Tennis
FRIDAY - Dinner
SATURDAY - Movie

Conclusion
Java 5 has raised enum to a first class citizen. It removes some of the problems that
enums have in traditional C/C++ and the workarounds in earlier versions of Java. It is
very powerful. However, it also allows you to make it pretty complicated and hard to
understand. Within reasons, enum in Java 5 is by far is a better solution to how enums
should be handled.

References

1. Jashua Bloch, "Effective Java," Addison Wesley.
2. http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

