
Unit Testing C++ Code – CppUnit by Example
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
JUnit for Java popularized unit testing and developers using different languages are
benefiting from appropriate tools to help with unit testing. In this article, I show–using
examples–how to create unit tests for your C++ applications.

Why sudden interest in C++?
I have been asked at least three times in the past few weeks “Unit testing is cool, but how
do I do that in my C++ application?” I figured, if my clients are interested in it, there
should be general wider interest out there in that topic and so decided to write this article.

Assuming your familiarity with Unit Testing
In this article, I assume you are familiar with unit testing. There are some great books to
read on that topic (I’ve listed my favorites1, 2 in the references section). You may also
refer to my article on Unit Testing3.

How is Unit Testing different in C++?
Java and C# (VB.NET) have a feature that C++ does not – reflection. If you have used
JUnit4 or NUnit5, you know how (easy it is) to write a test case. You either derived from
a TestCase class in the case of Java or you mark your class with a TestFixture attribute in
the case of .NET (With Java 5’s annotation, you may also look forward, in JUnit 4.0, to
marking your Java test case instead of extending TestCase). Using reflection the unit
testing tool (JUnit/NUnit) finds your test methods dynamically.

Since C++ does not have support for reflection, it becomes a bit of a challenge to write a
unit test in C++, at least the JUnit way. You will have to exploit some of the traditional
features of C++ to get around the lack of reflection feature.

How to tell what your tests are?
In C++, how can you make the program know of the presence of a certain object
dynamically or automatically? You can do that by registering an instance of your class
with a static or global collection. Let’s understand this with an example. If you are an
expert in C++, browse through this section. If you will benefit from this example, then
read it carefully and try it out for yourself.

Let’s assume we have different types of Equipment: Equipment1, Equipment2, etc. More
Equipment types may be added or some may be removed. We want to find what kind of
equipment is available for us to use. The following code does just that. Let’s take a look
at it step by step.

#include <string>
using namespace std;

class Equipment
{
public:
 virtual string info() = 0;
};

Equipment is defined an abstract base class with a pure virtual function info().

#include "Equipment.h"
#include <vector>

class EquipmentCollection
{
public:
 static void add(Equipment* pEquipment)
 {
 if (pEquipmentList == NULL)
 {
 pEquipmentList = new vector<Equipment*>();
 }

 pEquipmentList->push_back(pEquipment);
 }

 ~EquipmentCollection()
 {
 delete pEquipmentList;
 }

 static vector<Equipment*>& get()
 {
 return *pEquipmentList;
 }
private:
 static vector<Equipment*>* pEquipmentList;
};

EquipmentCollection holds a collection (vector) of Equipment through a static pointer
pEquipmentList. This static pointer is assigned to an instance of vector<Equipment*>,
an instance of vector of Equipment pointers, the first time the add() method is called
(the given code is not thread-safe). In the add() method, we add the pointer to the given
Equipment to the collection. The collection is initialized in the EquipmentCollection.cpp
file as shown below:

//EquipmentCollection.cpp
#include "EquipmentCollection.h"

vector<Equipment*>* EquipmentCollection::pEquipmentList = NULL;

How are elements placed into this collection? I use a class EquipmentHelper to do this:

#include "EquipmentCollection.h"

class EquipmentHelper

{
public:
 EquipmentHelper(Equipment* pEquipment)
 {
 EquipmentCollection::add(pEquipment);
 }
};

The constructor of EquipmentHelper receives Equipment and adds it to the collection.

Equipment1 is shown below:

#include "EquipmentHelper.h"

class Equipment1 : public Equipment
{
public:
 virtual string info()
 {
 return "Equipment1";
 }
private:
 static EquipmentHelper helper;
};

The class holds a static instance of EquipmentHelper. The static instance is initialized as
shown below in the Equipment1.cpp file:

//Equipment1.cpp
#include "Equipment1.h"

EquipmentHelper Equipment1::helper(new Equipment1());

The helper is provided with an instance of Equipment1 which it registers with the
collection in EquipmentCollection. Similarly, I have another class Equipment2 with a
static member variable named helper of type EquipmentHelper and it is given an
instance of Equipment2 (I have not shown the code as it is similar to the code for
Equipment1). You may write other classes (like Equipment3, Equipment4, etc.)
similarly.

Let’s take a closer look at what’s going on. When a C++ program starts up, before the
code in main() executes, all static members of all the classes are initialized. The order in
which these are initialized is, however, unpredictable. The members are initialized to 0
unless some other value is specified. In the example code above, before main starts, the
helper within Equiment1, Equipment2, etc. are all initialized, and as a result, the
collection of Equipment is setup with an instance of these classes. Now, let’s take a look
at the main() function.

#include "EquipmentCollection.h"
#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{
 cout << "List contains " << endl;

 vector<Equipment*> equipmentList = EquipmentCollection::get();
 vector<Equipment*>::iterator iter = equipmentList.begin();
 while(iter != equipmentList.end())
 {
 cout << (*iter)->info() << endl;
 iter++;
 }

 return 0;
}

In main(), I fetch an instance of the collection and iterate over its contents, getting
instances of different kinds of Equipment. I invoke the info() method on each
Equipment and display the result. The output from the above program is shown below:

List contains
Equipment1
Equipment2

If you are curious about the above example, go ahead, copy and paste the code above and
give it a try. Write your own Equipment3 class and see if main() prints information
about it without any change.

Now that we have figured out how to dynamically recognize classes being added to our
code, let’s take a look at using macros to do the job. If you are going to write another
Equipment class, like Equipment3, you will have to follow certain steps:

1. You must declare a static member of EquipmentHelper
2. You must initialize it with an instance of you class

That is really not that hard to do, however, macros may make it a tad easier. Let’s take a
look at first defining two macros.

###iiinnncccllluuudddeee " ""EEEqqquuuiiipppmmmeeennntttCCCooolllllleeeccctttiiiooonnn...hhh"""

#define DECLARE_EQUIPMENT() private: static EquipmentHelper helper;
#define DEFINE_EQUIPMENT(TYPE) EquipmentHelper TYPE::helper(new
TYPE());

ccclllaaassssss EEEqqquuuiiipppmmmeeennntttHHHeeelllpppeeerrr
{

{{
pppuuubbbllliiiccc:::
 EEEqqquuuiiipppmmmeeennntttHHHeeelllpppeeerrr(((EEEqqquuuiiipppmmmeeennnttt*** pppEEEqqquuuiiipppmmmeeennnttt)))
 {

 {{
 EEEqqquuuiiipppmmmeeennntttCCCooolllllleeeccctttiiiooonnn::::::aaadddddd(((pppEEEqqquuuiiipppmmmeeennnttt)));;;
 }}}
}}};;;

Now, I can use these macros to write a class Equipment3 as shown below:
#include "EquipmentHelper.h"

class Equipment3 : public Equipment
{
public:
 virtual string info()
 {
 return "Equipment3";
 }

DECLARE_EQUIPMENT()
};

//Equipment3.cpp
#include "Equipment3.h"

DEFINE_EQUIPMENT(Equipment3)

Of course we did not make any change to main(). The output from the program is shown
below:

List contains
Equipment1
Equipment2
Equipment3

There is no guarantee that the program will produce the output in this nice order. You
may get a different ordering from what’s shown above.

OK, let’s move on to what we are here for, to see how to write unit tests with CPPUnit.

Setting up CPPUnit
I am using CPPUnit 1.10.26 in this example. Download cppunit-1.10.2.tar.gz and
uncompress it on your system. On mine, I have uncompressed it in c:\programs. Open
CppUnitLibraries.dsw which is located in cppunit-1.10.2\src directory and compile it. I
had to build it twice to get a clean compile. After successful build, you should see
cppunit-1.10.2\lib directory.

Setting up Your Project
We will use Visual Studio 2003 to build this example – unmanaged C++. Created a
console application named MyApp. In Solution Explorer, right click on “Source Files”
and select Add | Add New Item…. Create a file named Main.cpp as shown here:

Write a dummy main() method for now:

int main(int argc, char* argv[])
{
 return 0;
}

Right click on the project in Solutions Explorer and select Properties. For the “Additional
Include Directories” for C/C++ properties, enter the directory where you have CPPUnit
installed on your machine. I have it under c:\programs directory. So, I entered the
following:

Modify the “Runtime Library” in “Code Generation” as shown below:

Set the “Enable Run-Time Type Info” in “Language” properties as shown below:

Two more steps before we can write code. Under “Linker,” for “General” properties, set
“Additional Library Directories” to point to the lib directory under CPPUnit as shown
below:

Finally, set the “Additional Dependencies” in “Input” as shown below:

Running your unit test
Let’s now create a Unit Test. We will start in Main.cpp that we have created in the last
section. Modify that file as shown below:

1: #include <cppunit/CompilerOutputter.h>
2: #include <cppunit/extensions/TestFactoryRegistry.h>
3: #include <cppunit/ui/text/TestRunner.h>
4:
5: using namespace CppUnit;
6:
7: int main(int argc, char* argv[])
8: {
9: CppUnit::Test* suite =
10: CppUnit::TestFactoryRegistry::getRegistry().makeTest();
11:
12: CppUnit::TextUi::TestRunner runner;
13: runner.addTest(suite);
14:
15: runner.setOutputter(new CppUnit::CompilerOutputter(
16: &runner.result(), std::cerr));
17:
18: return runner.run() ? 0 : 1;
19: }

In lines 1 to 3, we have included the necessary header files from CPPUnit. The
CompilerOutputter class is useful to display the results from the run of a test. The
TestFactoryRegistry class keeps a collection of tests (this is like the
EquipmentCollection class we saw in our example). The TestRunner class will
execute each test from the test classes we register with the TestFactoryRegistry. This
is like the code that iterated though the Equipment collection in our example. In that
example, we iterated and printed the result of info() method invocation. TestRunner
does something useful – runs your tests.

In lines 9 and 10, I invoke the TestFactoryRegistry’s getRegistry() method and
invoke its makeTest()method. This call will return all the tests found in your application.
In lines 12 through 16, I have created a TestRunner object, the one that will take care of
running the tests and reporting the output using the CompilerOutputter. The
CompilerOutputter will format the error messages in the compiler compatible format –
the same format as the compiler errors – so you can easily identify the problem areas and
also this facilitates IDEs to jump to the location of the error in your test run.

Finally in line 18, I ask the tests to run. We haven’t written any tests yet. That is OK, let’s
go ahead and give this a try. Go ahead, compile the code and run it. You should get the
following output:

OK (0)

This says that all is well (after all there is not a whole lot we have done to mess up!) and
that no tests were found.

Writing unit tests
We will take the test first driven approach1,3 to writing our code. We will build a simple
calculator with two methods, add() and divide(). Let’s start by creating a Test class as
shown below:

// CalculatorTest.h

#include <cppunit/extensions/HelperMacros.h>

using namespace CppUnit;

class CalculatorTest : public TestFixture
{
 CPPUNIT_TEST_SUITE(CalculatorTest);
 CPPUNIT_TEST_SUITE_END();
};

// CalculatorTest.cpp

#include "CalculatorTest.h"

CPPUNIT_TEST_SUITE_REGISTRATION(CalculatorTest);

You may study the macros I have used in the header file. I will expand here on the macro
I have used in the cpp file, that is CPPUNIT_TEST_SUITE_REGISTRATION:

#define CPPUNIT_TEST_SUITE_REGISTRATION(ATestFixtureType) \
 static CPPUNIT_NS::AutoRegisterSuite< ATestFixtureType > \
 CPPUNIT_MAKE_UNIQUE_NAME(autoRegisterRegistry__)

Notice the creation of a static object. This object will take care of registering the test
fixture object with the test registry.

Now, let’s go ahead and write a test:

// CalculatorTest.h

#include <cppunit/extensions/HelperMacros.h>

using namespace CppUnit;

class CalculatorTest : public TestFixture
{
 CPPUNIT_TEST_SUITE(CalculatorTest
 CPPUNIT_TEST(testAdd);

);

 CPPUNIT_TEST_SUITE_END();

public:
 void testAdd()
 {
 }
};

I have created a method testAdd() and have declared a macro CPPUNIT_TEST to
introduce that method as a test. Let’s compile and execute this code. The output is shown
below:

.

OK (1)

The above output shows that one test was executed successfully.

Let’s modify the test code to use the Calculator:

 void testAdd()
 {
 Calculator calc;

 CPPUNIT_ASSERT_EQUAL(5, calc.add(2, 3));
 }

I am using the CPPUNIT_ASSERT_EQUAL to assert that the method add returns the expected
value of 5. Let’s create the Calculator class and write the add() method as shown below:

#pragma once

class Calculator
{
public:
 Calculator(void);
 virtual ~Calculator(void);

 int add(int op1, int op2)
 {
 return 0;
 }
};

Let’s execute the test and see what the output is:

.F

c:\...\calculatortest.h(20) : error : Assertion
Test name: CalculatorTest::testAdd
equality assertion failed
- Expected: 5
- Actual : 0

Failures !!!
Run: 1 Failure total: 1 Failures: 1 Errors: 0

The output shows us that my test failed (obviously as I am returning a 0 in the add()
method). Let’s fix the code now to return op1 + op2. The output after the fix is:

.

OK (1)

Let’s write a test for the divide() method as shown below:

 void testDivide()
 {
 Calculator calc;

 CPPUNIT_ASSERT_EQUAL(2.0, calc.divide(6, 3));
 }

Remember to add

 CPPUNIT_TEST(testDivide);

as well.

Now the divide() method in the Calculator class looks like this:

 double divide(int op1, int op2)
 {
 return op1/op2;
 }

The output is shown below:

..

OK (2)

It shows us that two tests were executed successfully.

Let’s write one more test, this time a negative test:

 void testDivideByZero()
 {
 Calculator calc;

 calc.divide(6, 0);
 }

We are testing for division by zero. Intentionally I have not added any asserts yet. If we
run this, we get:

...E

##Failure Location unknown## : Error
Test name: CalculatorTest::testDivideByZero
uncaught exception of unknown type

Failures !!!
Run: 3 Failure total: 1 Failures: 0 Errors: 1

CppUnit tells us that there was an exception from the code. Indeed, we should get an
exception. But the success of this test is the method divide throwing the exception. So,
the test must have reported a success and not a failure. How can we do that? This is
where CPP_FAIL comes in:

 void testDivideByZero()
 {
 Calculator calc;

 try
 {
 calc.divide(6, 0);
 CPPUNIT_FAIL(

 "Expected division by zero to throw exception!!!!");
 }
 catch(Exception ex)
 {
 // Fail throws Exception,

//we will throw in back to CppUnit to handle

 throw;
 }
 catch(...)
 {
 // Division by Zero in this case. Good.
 }
 }

If the method divide() throws an exception, then we are good. If the method does not
throw exception, then we force fail this test by call to the CPPUNIT_FAIL.

Let’s run the test now:

...

OK (3)

We have passing tests.

Reexamining the Divide by Zero
Let’s make a change to the divide() method in Calculator–we will make the method
take double instead of int as parameters.

 double divide(double op1, double op2)
 {
 return op1/op2;
 }

Let’s rerun out tests and see what we get:

...F

c:\agility\myapp\calculatortest.h(39) : error : Assertion
Test name: CalculatorTest::testDivideByZero
forced failure
- Expected division by zero to throw exception!!!!

Failures !!!
Run: 3 Failure total: 1 Failures: 1 Errors: 0

CppUnit tells us that the division by zero did not throw the exception as expected! The
reason is the behavior of floating point division is different from the integer division.
While integer division by zero throws an exception, division by zero for double returns
infinity. This further illustrates how CPPUNIT_FAIL helps.

Conclusion
If you are a C++ developer, you can take advantage of unit testing using CppUnit. Since
C++ does not provide some features of Java and .NET languages, you have to work
around those limitations. However, CppUnit addresses these by providing helper macros.
We first took time to see how in C++ we can identify classes automatically. Then we
delved into examples of using CppUnit.

References

1. Test Driven Development: By Example, Kent Beck.
2. Pragmatic Unit Testing in C# with NUnit, Andy Hunt, Dave Thomas.
3. Test Driven Development – Part I: TFC,

http://www.agiledeveloper.com/download.aspx
4. http://www.junit.org
5. http://www.sourceforge.net/projects/nunit
6. http://www.sourceforge.net/projects/cppunit

http://www.agiledeveloper.com/download.aspx
http://www.junit.org/
http://www.sourceforge.net/projects/nunit
http://www.sourceforge.net/projects/cppunit

