Test Driven Development — Part I: TFC

Venkat Subramaniam
venkats@agiledeveloper.com
http://www.agiledeveloper.comvdownload.aspx

Abst r act

Inthisfirst of the three part series on Test Driven Development, we focus on using NUnit
to write our test cases and will illustrate the benefit of writing the test first, that is before
writing the code. In Part 11 we will look at Mock objects and in Part 111 we will look at
continuous integration.

A Probl em St at enent
Let’s consider the following problem statement. Please do not read further. Spend about
10 minutes on the following assignment:

Draw a UML diagram or simply list the classes you would want to write for the following
application.

We want to implement the Tick-Tack-Toe in this exercise. There are two users to the
system. One will place an 'x' peg and the other an '0' peg in cells. There are three rows
and three columns. First a user must indicate whether the first player will use the 'x' peg
or the '0' peg. Then the first player is asked to place a peg on a cell. The player can only
place on an empty cell. The game continues until a player has placed three pegsin arow,
column or diagonally or there are no more empty cells left. If the game is won, the
victory is announced. The application will keep track of the number of wins by each
player. At any time, a user may request to view the statistics of the name of players and
number of games each one has won.

Have you spent the 10 minutes thinking about the design of the system? OK, now you
can read on.

Initial Thoughts on C asses

| have had the opportunity to use this exercise in my classes and at the symposiums
where | speak. This article is based on those events and they all are more or less
consistent. When discussing this, we generally came up with classes like Peg, Board,
Cell, User, Player, Score, Statistics, and Rules to mention a few.

Y ears ago when | used to develop applications for the middle tier, | would sit down and
write some test code or a Ul to test the code | wrote. It was some what painstaking to test
some of the code and | managed to do some marginal test until I gained confidence that
the codeis doing what it is supposed to do. Also, we sat down and came up with a design,
drew some diagrams using notations (like UML or those that it derived its roots from).
Once | put the code out for some one to integrate with, 1 would proceed with the next
task. Days or even weeks later, | would hear from the surprised programmer integrating
with my code as to why it seems to not work the way it was expected. At that point, it
usually was more expensive to figure out what was going on and fix it.

Unit Testing is an Act of Design than Verification

To say that | have fallen in love with Unit Testing is an understatement. It has worked so
well for my projects and | can’'t imagine developing applications without it. If you have
not had a chance, | strongly recommend you to read the great books™ % ** mentioned in
the reference at the end of the article.

In Test First Coding, as we write the test code before writing the class, we are motivated
to think about how our class will be used. Without it we focus more on implementation.
This approach, on the other hand, let’s us focus on how our class will be used. This leads
to adesign that is simpler and pragmatic. We can start out with a general understanding
of the design with a high level UML diagram. However, once we get into developing the
code, the unit tests can pretty much drive our design.

Of course, it is important that we use the Object-Oriented Design Principles® when
writing the code. Without the principle, it would become a mere hack in my opinion.

How to wite the test?

First think of what you want to test. There are at |east three things
we need to wite the test for: positive, negative and exception. Wen
thinking of a task, think of the positive, i.e., what it should do
correctly assumng every thing is ideal. Then think of the negative,
i.e., what could go wong and how should the code behave. The exception
is to think about possibility of alternate sequence of events that
coul d happen and how the code should behave to acconmpbdate those. The
success of a positive test is when the code does what is expected. The
success of negative and exception test may be if the code fails as
expect ed.

Were to wite a test?

Since we may be interested in testing not just the public methods but the internal methods
as well, the test should be within the same project in .NET (in Java, within the same
package). Of course, what if we want to test the private implementation of a class? Sure,
we can write atest as a nested class in this case!

Task Li st

First we start out by writing atest list. This list will have one or more testsin it. Then we
go through the list and pick the one that we can implement right away. As we start
writing the test and the code, our mind (being a beautiful one) will think of other tests
that we need to do. Do not write those tests when they come to your mind. Instead, put
them at the end of the task list. It is important to continue working with the task on hand,
but to jot down those thoughts that come to mind. Then you can go back and give due
attention to those and take care of implementing those (if necessary).

Can we pl ease start codi ng?

Enough said already. OK, OK, we can start coding. But first, let’s create our task list.
What do we want to test first? How about creating a board? That sounds good. But, what
do we do after creating the board? Well, we should always write our test with assert in
mind. We want to assert to see if the board was created fine. OK, we can do that, but that
istrivial in most cases (unless we get arather unlikely OutOfMemoryException). Humm,

what can we assert then? How about asserting the game is not over when we create the
board. Alright, let’s do that.

Task List
1. Create board

We first create a Blank Solution named TickTackToeApp. In it we create a C# Class
Library project (You may have created a VB.NET project if you desired) named
TickTackToelLib and in it create a class called TickTackToeTest with one method as
shown below:

usi ng System
usi ng NUni t. Franework;

nanespace Ti ckTackToelLib

[Test Fi xture]
public class TickTackToeTest

{
[Test]
public voi d testCreateBoard()
{
Ti ckTackToeBoard board = new Ti ckTackToeBoar d() ;
Assert. | sNot Nul | (board);
Assert . | sFal se(board. GanreOver) ;
}
}

}

The TestFixture attribute tells us that the class is a Test case. The Test attribute tells us
that the method is a test method. These are part of the NUnit framework. We have
downloaded and installed NUnit 2.2°. We added a reference to nunit.framework.dll from
the Global Assembly Cache (GAC). We now get a compilation error that the class
TickTackToeBoard is not found. That is good. Our test case failed in a sense. Now we
can create that class and implement the property GameOver as shown below:

usi ng System

nanespace Ti ckTackToelLib

{
public class TickTackToeBoard
public bool GameOver
{
get { return false; }
}
}

You look a the GameOver property and say, “Hum, what is the point of returning a
false.” Well, in TFC, we will lie our way through as much as we can. We provide only

implementation that is absolutely necessary. We will soon find that we can lie our way
only for so long. OK, let’s compile the code and make sure we have no more compilation
errors. It is time to run our first test case. Go to solutions explorer and bring up the
properties on the project. In the Debugging section, change the Debug Mode from Project
to Program and click Apply. Then select the NUnitGui.exe in the Start Application as
shown below:

TickTackToelib Property Pages] x|
Configuration: I.ﬁ.ctive(Dabug}l ll Platfarrm: {.ﬁ.ctive(.NET} L] Configuration Manager.. ., |
1 Corrmon Properties =) =
_i Configuration Properties Enable 43P Debugging False
Build Enable A5SP,MET Debugging False
& Debugging Enable Unmanaged Debugging False
Adwanced Enable SQL Debugding False
= b Bl
Debug Made Praogram

Start Application rams NUnit Z.Z\hin"gnunit—gui.e:-:e;,i

E si
Command Ling Arguments
‘Warking Directary
Alwaws Use Internet Explorer False
Erzhla Daracka Diahiianinag Ealca ﬂ
Start Application

Indicates the program that should be started when the project is debugged.
For example, vou might run a pre-builk client that consumes vour Class |,

0K | Cancel | Apply] Help]

Click OK and start the program (by hitting Ctrl + F5). Thiswill bring the NUnitGui. Y ou
do not have to close this if you make change to the code. Y ou can continue to edit and
compile the code in studio and NUnitGui will automatically update the assembly and let
you continue with your tests. When you start, NUnitGui will load up an assembly that it
had loaded on a previous run (if any). You can click on File menu and click on Open
menu item and open the TickTackToeLib.dll that you created.

Here iswhat we get when we run the program and click on Run.

EB rickTackToeLib.dll - NUnit = |00 x|

File Wiew Project Tools Help
Tests iEahegu:uriesl

- Citernpl0SicodelTickTackToebppl Eiun | TickTackToelib.di
- TickTackToelib
- TickTackToeTest
testCreateBoard
i Tests NDtHun] Conzole Emar Eu:unsu:u}e.l:luti
< | -+
Completed Test Cazes: 1 Testz Bun: 1 Failures : 0 Time : 0LOG0072

There was one test case and it succeeded as indicated by the green bar. We successfully
executed our first test. Let’s proceed further. A look at our task list so far:

Task List
1. Create board

Now that we have the test succeed, what do we want to do next? Can we think of more
tests to write? What come next to mind are the following tests:

Task List
1. Create board
2. Set First player
3. Set First player again
4. Set First Player after game starts

We not only want to test for setting the first player, we want to also think about how the
code should behave if we set it again and if we set it after the game starts, that is after a
peg has been placed.

Now, let’s write the test for task #2. How should we write it? One participant suggested
that we write:

Participant: board.SetFirstPlayer(*Venkat”);

Venkat: “Well, doesthe game care about the player being Venkat.”

Participant: “Y eah!”

Venkat: “Why?’

Participant : “Y ou sure want to know who the players are, don't you?’

Venkat: “I don’'t know at this point. | may need that later on, or may be not. Think of the
YAGNI Principle. It stands for You Aren't Going to Need It (coined by Ronald E
Jeffries). Do not build some thing that you are not sure you need at that moment.”
Participant: “Hum...?’

(You will see the YAGNI at work in Part 1l for this feature) So, what should we do?
Well, we may try

board.SetFirstPlayerPeg(“ X");

Thiswill let the board (game) know that the first peg to be placed will be a“X” peg. That
sounds good. But on a second thought, what if some one calls SetFirstPlayerPeg(“Z");
Well Z is not avalid peg, so we need to write another test case to check for that. OK, let’s
go to the task list and add atest. Oh, wait a minute, there is another problem. If we allow
themto set X or O, what if later on they want to use some other character? When we get
it out, we need to check if we got a“X” or “O” aswell. Isthat really needed? What is we
write some thing like:

board.|sFirstPlayerPegX (true);

Then, we do not have to worry about that test and the characters used. “X” is more
symbolic. Thisis a pretty simplified interface to the board isn't it?1 like that, let’s go for
that, except we may use a property instead of a method. The test is shown below:

[Test]
public void testSetFirstPlayer()

{
Ti ckTackToeBoard board = new Ti ckTackToeBoar d();

board. Fi rst Pl ayer Pegl sX = true;
Assert. | sTrue(board. FirstPl ayer Pegl sX);

}

We first set the first player peg to be X. Now, remember we have to write the test with
assert in mind. So, we want to check if the peg to be placed is an X. Of course, thisis
arguable. Are we testing the set of the first player or are we testing the get of it? Well, if
we really want to only test the set, then we may write atest in a nested class and set this
property and then test some private member of the class. For now, | am going to accept
the above as OK. We need to implement the property:

publ i c bool FirstPlayerPeglsX
{

get { return true; }
set { }

}

That was quite a simple implementation. The get returns a true and the set does nothing.
Let’s compile and switch to NUnit and click on the Run button. We get:

Bl rickTackToeLib.dll - NUnit E =101

File Wiew Project Tools Help
Tests ||:at-gwieg|

-l CitermplDBicodelTickTackToedppt” Eiun | TickTackToelib.di
- TickTackToelib
- TickTackToeTest
testCreateBoard ; ;
testSetFirstPlayer J Testz Mot Run] Conzole. Erwor Ecrnsu:u}a.l.flutl
N J s u
Completed Test Cazes: 2 Testz Bun: 2 Failures : 0 Time : 0LOG0072

Well, both the tests succeeded. Let’s revisit our task list now and look at what we can
pick fromit:

Task List
1. Create board
2. Set Firgt player
3. Set First player again
4. Set First Player after game starts

We can’t possibly pick task #4 as we have no idea how to do that yet. What about task
#3. That looks like doable. So, here isthe test for that:

[Test]
public void testSetFirstPlayerAgain()
{
Ti ckTackToeBoard board = new Ti ckTackToeBoar d();
board. Fi r st Pl ayer Pegl sX = true;
Assert. | sTrue(board. FirstPl ayer Pegl sX);
board. Fi rst Pl ayer Pegl sX = fal se;
Assert .| sFal se(board. Fi rst Pl ayer Pegl sX);

}

Now, we compile and since there was no compilation error, we switch to NUnit and click
on Run. We get:

L=
File View Project Tools Help
Tests |Emgﬂm|

=0 CiempllficodelTickTackToedppt Eiun Sloy | TickTackT oelib.di

=8 TickTackToeLib

= @ TickTackToeTest IIIIIIIIIIIIIIIIIIIII
teztCreateBoard
testSetFirztPlaver

0 testSetFirstPlaverdgain

i ;I Tests Not Hml Cmmhfﬁml Emscdﬁﬂml
TickTackToelLib. TickTackToeTest. testsetFi r‘s‘tF_I

4| | 4 - |

jﬂm‘mletﬁd Test Cazes: 3 Tests Fun: 3 Failures : 1 Time : 01402016

Well the third test failed. Why? Because, we expected a false, but the
Fi rst Pl ayer Pegl sX returned a true. Looking at the code we realize we could only lie
our way through it for so long. Let’s implement the property correctly now:

public class TickTackToeBoard

{
private bool NextPlayerlskX;
public bool GameQOver
{
get { return false; }
public bool FirstPlayerPeglsX
{
get { return NextPlayerlsX }
set { NextPlayerlsX = val ue; }
}
}

We introduced a private Boolean field named NextPlayerlsX and we are setting it to true
within the FirstPlayerlsX property if the given input is true. Otherwise, set it to false.
Now running the test case results in all the three tests succeeding as shown here:

Bl rickTackToeLib.dll - NUnit : =10 x}

File Wiew Project Tools Help
Tests lEahegu:uriesl

- Citernpl0SicodelTickTackToebppl Eiun | TickTackToelib.di
- TickTackToeLib
- TickTackToeTest
teztCreateBoard
testSetFirztPlaver
teztSetFirztPlavertgain J

i Tests Nu:utFEun] Conzole Emar Eu:unsu:u}e.l:lutl

| | 2 -

LCaompleted Test Cazes: 3 Testz Bun: 3 Failures : 0 Time : 00400576

Now is agood time to look at the code and refactor. Looking at the test class, we see that
we are, a the beginning of each test case, creating an object of the Board repeatedly. That
is a violation of the DRY® principle which stands for Don’'t Repeat Yoursalf. Well, we
can move the object into the class as a member. The problem with that is if one test
messes up the object, the tests following that may be messed up as well. We do not want
that. We want tests to be isolated from one another. So, we want to create the object
within each test. But, what about the DRY principle, should we just forget it? This is
where the [SetUp] attribute comes in. A method that is declared with that attribute is
executed at the beginning of each test. Similarly, a method marked with a[TearDown] is
executed after each test executes. The test code is modified as shown below:

[Test Fi xture]
public class TickTackToeTest

{
private Ti ckTackToeBoard board;
[Set Up]
public void createBoard()
{
board = new Ti ckTackToeBoard();
}
[Test]
public voi d testCreateBoard()
{
Assert. | sNot Nul | (board);
Assert . | sFal se(board. GanreOver) ;
}
[Test]
public void testSetFirstPlayer()
{

board. Fi rst Pl ayer Pegl sX = true;
Assert. | sTrue(board. FirstPl ayer Pegl sX);

Let’slook at the task list again:

Task List
e]
R
e
4. Set First Player after game starts

The only test left on the list right now is the one | have no idea how to test yet. So, let's
leave it there and get back to it later. We will write more tests now:

4. Set First Player after game starts
5. Placefirst peg

6. Place peg at occupied position

7. Place peg out of column range

8. Place peg out of row range

Typically we would write only one test at a time. We will go from writing test,
implementing code, get a red bar on NUnit, get a green bar on NUnit, and refactor.
Which test do we want to write now? Well, the obvious choice istask #5. So, here isthe
ted:

[Test]
public void testPlaceFirstPeg()

{
board. Fi r st Pl ayer Pegl sX = true;

board. Pl acePeg(0, 1);
Assert .| sTrue(board. PegAt PositionlsX(0, 1));

}
The first implementation of these methods is given below:

public void PlacePeg(int row, int colum)

{
}
publ i c bool PegAtPositionlsX(int row, int colum)
{
return fal se;
}

Thiswill result in the test failing as shown here:

Bl rickTackToeLib.dll - NUnit 3 =101

File Wew Project Tools Help
Tests ||:a‘t-ggﬂ'iegl

=0 Clhitempl0ficodelTickTackToedppt Eiun
=@ TickTackToelLib

testPlaceFistPeg

= @ TickTackToeTest EEEEEEEEEEEEREEREREER

teztCreateBoard £ dFad
O testPlaceFirstPeg jars Cr o e | Tem Nat Run ! Caonsole. Error I Console. DUEI

ckTackToeTest. testP]l aceFi r:

teztSetFirztPlaver
teztSetFirstPlavertgain

l | 2 -

EHeady Test Cases: 1

We now go from Red to Green with the following code:

private string[,] pegs
= new string[,] {{"", "", "}, {"", ", UhO{". UL "M

public void PlacePeg(int row, int colum)

{

pegs[row, colum] = "O';

i f (NextPlayerlsX) pegs[row, colum] = "X";
}
public bool PegAtPositionlsX(int row, int colum)
{

return pegs[row, colum] == "X";
}

Now, let’s move on to the next test, namely “Place peg at occupied position.” Here isthe
test:

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dException))]
public void testPlacePegAt Cccupi edPosition()

boar d. Fi rst Pl ayer Pegl sX = true;
board. Pl acePeg(0, 1);
board. Pl acePeg(0, 1);

}

The success of this test is in the failure of the code by throwing an exception. So, we
declare an attribute ExpectedException which tells NUnit to make sure that an exception
of type TickTackToeBoardException is being thrown. You may also ask for it to verify
that a specific message has been thrown as part of the exception.

As | am writing this test, two thoughts come to mind. What about setting the first peg
without setting the first player? Second, what about getting the peg from an unoccupied
position? At this moment, | should avoid the urge to implement these tests, but enter
them into the task list as shown below:

Task List
e]
R
e
4. Set First Player after game starts
.
6. Place peg at occupied position (being implemented right now)
7. Place peg out of column range
8. Place peg out of row range
9. Place Peg without setting first player
10. Get peg from unoccupied position

Now, let’s complete the test for task #6. We need to implement the code for that as
shown below:

usi ng System

nanespace Ti ckTackToelLib

public class TickTackToeBoar dException : Applicati onException

{
public TickTackToeBoar dExcepti on(string nessage)
base(message)
{
}
}

}

And inthe TickTackToeBoard class, we modify the PlacePeg method as follows:

public void PlacePeg(int row, int colum)

{
if (pegs[row, colum] != String. Enpty)
{
t hrow new Ti ckTackToeBoar dExcepti on(
"Posi tion occupied");
}
pegs[row, colum] = "0O'
i f (NextPlayerlsX) pegs[row, colum] = "X";
}

With this the bar goes from red to green. Let’s go ahead and implement the remaining
tests here and we add two more tests while at it to test range for getting peg at position.
We are showing both the tests and the supporting code here:

Place Peg out of column range:
[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testPl acePegQut O Col utmRange()
{
board. Fi r st Pl ayer Pegl sX = fal se;
board. Pl acePeg(1, 3);

}

public void PlacePeg(int row, int colum)
{
if(row< 0 || row > 2)
t hrow new Ti ckTackToeBoar dExcepti on(
"Row out of range");

if (colum < 0 || colum > 2)
t hrow new Ti ckTackToeBoar dExcepti on(
"Col um out of range");

if (pegs[row, colum] != String. Enpty)
{

t hrow new Ti ckTackToeBoar dExcepti on(
"Position occupied");

}

pegs[row, colum] = "0O';
i f (NextPlayerlsX) pegs[row, colum] = "X";
}

Place peg out of row range:

[Test,

Expect edExcepti on(t ypeof (Ti ckTackToeBoar dExcepti on))]
public void testPl acePegQut OF RowRange()
{

board. Fi rst Pl ayer Pegl sX = fal se;

board. Pl acePeg(-1, 1);

Get peg from unoccupied position

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public voi d testGet PegFromnmnoccupi edPosition()

{
board. Fi rst Pl ayer Pegl sX = fal se;
boar d. PegAt Posi tionl sX(0, 1);
}
publ i c bool PegAtPositionlsX(int row, int colum)
{

if (pegs[row, colum] == "")
t hrow new Ti ckTackToeBoar dExcepti on(
"Position enpty");

return pegs[row, colum] == "X";

}

Get peg out of column range

[Test,

Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]

public void testGet PegQut O Col utmRange()
{
board. Fi rst Pl ayer Pegl sX = fal se;
boar d. PegAt Posi tionl sX(0, 3);

}
publ i c bool PegAtPositionlsX(int row, int colum)

if(row< 0 |] row > 2)
t hrow new Ti ckTackToeBoar dExcepti on(
"Row out of range");

if (colum < 0 || colum > 2)
t hrow new Ti ckTackToeBoar dExcepti on(
"Col um out of range");

if (pegs[row, colum] == "")
t hrow new Ti ckTackToeBoar dExcepti on(
“Position enmpty");

return pegs[row, colum] == "X";
}
Now that we have a green bar, good time to refactor* some code that is violating the
DRY?® principle.
private void CheckRange(int row, int columm)
{
if(row< 0 |] row > 2)
t hrow new Ti ckTackToeBoar dExcepti on(
"Row out of range");
if (colum < 0 || colum > 2)
t hrow new Ti ckTackToeBoar dExcepti on(
"Colum out of range");
}
public void PlacePeg(int row, int colum)
{

CheckRange(row, colum);
if (pegs[row, colum] != String. Enpty)

t hrow new Ti ckTackToeBoar dExcepti on(
"Posi tion occupied");

pegs[row, colum] = "0O'

i f (NextPlayerlsX) pegs[row, colum] = "X";
}
publ i c bool PegAtPositionlsX(int row, int colum)
{

CheckRange(row, colum);

if (pegs[row, colum] == "")

t hrow new Ti ckTackToeBoar dExcepti on(
"Position enpty");

return pegs[row, colum] == "X'

}

Get peg out of row range

[Test,

Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testGet PegQut O RowRange()
{

board. Fi rst Pl ayer Pegl sX = fal se;

boar d. PegAt Posi tionl sX(-2, 1);

}

St First Player after game starts

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testSetFirstPlayerAfter GaneBegi ng()

{
board. Fi rst Pl ayer Pegl sX = fal se;
board. Pl acePeg(0, 1);
board. Fi r st Pl ayer Pegl sX = true;
}

public class TickTackToeBoard

{

private bool ganeStarted = fal se

publ i c bool FirstPlayerPeglsX

{
get { return NextPlayerlsX; }
set
if (ganmeStarted)
t hrow new Ti ckTackToeBoar dExcepti on(
"CGane has begun");
Next Pl ayer | sX = val ue;
}
}

public void PlacePeg(int row, int colum)

CheckRange(row, colum);
if (pegs[row, colum] != String. Enpty)
{
t hrow new Ti ckTackToeBoar dExcepti on(

"Position occupied");

}

pegs[row, colum] = "JO';
i f (NextPlayerlsX) pegs[row, colum] = "X";

ganeStarted = true;

}
Place Peg without setting first player

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testPl acePegW t hout Setti ngFirstPlayer()

{
}

board. Pl acePeg(0, 1);

public class TickTackToeBoard

{

private bool firstPlayerSet = fal se;

publ i c bool FirstPlayerPeglsX

{
get { return NextPlayerlsX; }
set
{
if (ganmeStarted)
t hrow new Ti ckTackToeBoar dExcepti on(
"CGane has begun");
Next Pl ayer | sX = val ue;
firstPlayerSet = true;
}
}

public void PlacePeg(int row, int colum)

if (!firstPl ayerSet)
t hrow new Ti ckTackToeBoar dExcepti on(
"First player not set");

The task list now looks like this;

Task List

1. Create board

Itstime now to think of more teststo write:

Task List

13. Set second Peg

14. Game win through column alignment
15. Game win through row alignment

16. Game win through diagonal alignment
17. Place peg after game win

Let’s implement these tests now:

Set second Peg
[Test]
public void testPl aceSecondPeg()
{
boar d. Fi rst Pl ayer Pegl sX = fal se;
board. Pl acePeg(0, 1);
Assert .| sFal se(board. PegAt PositionlsX(0, 1));
board. Pl acePeg(1, 2);
Assert. | sTrue(board. PegAt PositionlsX(1, 2));
}

public void PlacePeg(int row, int colum)
{

...(not shown)

Next Pl ayer| sX = ! Next Pl ayer | sX;

ganeStarted = true;

Game win through column alignment

[Test]
public void test WnGanmeByCol utmAl i gnment ()
{

boar d. Fi rst Pl ayer Pegl sX = fal se
board. Pl acePeg(0, 0); // "O
board. Pl acePeg(1, 2);
board. Pl acePeg(1, 0); // "O
board. Pl acePeg(2, 2);
board. Pl acePeg(2, 0); // "O
Assert. | sTrue(board. GameQver);

Now the NUnitGUI displays the failure of thistest:

Wrcircroeba-ume -Inix)
Eile Wiew Project Tools Help
Tests I Categories |

=0 Citempl08icodeiTickTackToedppiTickTackTo Fun | TickTackT oelib.dll

=8 TickTackToelib

= @ TickTackToeTest \IIIIIIIIIIIIIIIIIIII
testCreateBoard
testFlaceFirztPeg
testSetFirstFlaver

testSetFirstFlaverdgain

; I Tests Mot Hml Conzale. Efmtl Daﬂm&efmi
TickTackToelib. TickTackToeTest. testhh nGam_i

testPlacePegditCccupiedPosition

testPlacePegOutfColurmnRange =
testPlacePegOutfR owRange ..| | l‘J
testGetPegFromlUnococupiedPositic

testGetPegOutDiCalumnRange “J

testGetPegOutDiRowR ange
testSetFirstFlaverdfierGameBeging
teztFlacePegwWithoutSettingFirstFlz
teztFlaceSecondPeg

0 testwinGameByColumndlignment

4 | il | § KN _l_‘

Completed TestCases: 14 Tests Flun : 14 Failures : 1 Tirne : 01101584

In order to fix this, we need to fix the GameOver property. Looking at the GameOver

property, we find that we have lied out way so far at it!
public bool GameQOver
{

get { return false; }

Let’sfix this:

public bool GameOver

get
{ .
return CheckCol umAl i gnment () ;
}
}
private bool CheckCol umAl i gnment ()
bool result = fal se;
for(int i =0; i < 3; i++)

if (pegs[0, i] == pegs[1, i]
&% pegs[1, i] == pegs[2, i])
{

result = true;
br eak;

}

return result;

Now running NUnitGui we see the following:

El rickTackToeLib.dil - Nunit E =|0] x|
Eile Wiew Project Tools Help
Tests I Emgm@_g |
= Citempl0ficade\TickTackToeApplTickTackTo Bun | TickTackT oelib.di
= TickTackToeLib
= @ TickTackToeTest \IIIIIIIIIIIIIIIIIIII
O testCreateBoard
testFlaceFirztPeg
testSetFirstFlaver
testSetFirstFlaverdgain
testPlacePegditCccupiedPosition

| I Tests Mot Hunl Conzale. Efpa{l Emam&e[ﬂ.t'
T1 ckTackToelib. TickTackToeTest. testiCr eate_l

testPlacePegOutfColurmnRange =
testPlacePegOutOfR owRange ..I I ;I
testGetPegFromlUnococupiedPositic _J

testGetPegOutDiCalumnRange
testGetPegOutDiRowR ange
testSetFirstFlaverdfierGameBeging
teztFlacePegwWithoutSettingFirstFlz
teztFlaceSecondPeg
testwinGameByColumndlignment

4 | il | § KN LI_‘

Completed Test Cases: 14 Tests Alun: 14 Failures 1 Tire : 01301872

Incidentally, while the last test we are writing succeeds, the very first test is failing! The
game is over even before we played! Test cases are our angels. They let us refactor and

evolve the code, giving us the confidence that they are there around watching out for us.
See how the problem in the GetColumnAlignment came to surface pretty quickly. Let’s
fix this now:

|f (pegs[0, i] == pegs[1, i]
&& pegs[1, i] == pegs[2, i] &&
pegs[2, i] != String. Enpty)

Game win through row alignment

[Test]
public void test WnGanmeByRowAl i gnnment ()
{
board. Fi r st Pl ayer Pegl sX = true;
board. Pl acePeg(1, 0); // "X"
board. Pl acePeg(0, 2);
board. Pl acePeg(1, 2); // "X"
board. Pl acePeg(2, 0);
board. Pl acePeg(1, 1); // "X'
Assert. | sTrue(board. GameQver);
}
public bool GameOver
{
get
{ |
return CheckCol umAl i gnnment ()
|| CheckRowAl i gnnent () ;
}
}
private bool CheckRowAlignnent ()
{
bool result = fal se;
for(int i = 0; i < 3; i++4)
if (pegs[i, 0] == pegs[i, 1] && pegs[i, 1]
== pegs[i, 2]
pegs[i, 2] != String. Enpty)
result = true;
br eak;
}
}
return result;
}

Game win through diagonal alignment

[Test]
public void test WnGanmeByDi agonal Al i gnnment ()

board. Fi r st Pl ayer Pegl sX = true;
board. Pl acePeg(0, 2); // "X"
board. Pl acePeg(0, 0);
board. Pl acePeg(1, 1); // "X"
board. Pl acePeg(2, 2);
board. Pl acePeg(2, 0); // "X'
Assert. | sTrue(board. GaneQver);

}
public bool GameOver
{
get
{ | |
return CheckDi agonal Al i gnnment ()
|| CheckCol umAl i gnnent ()
|| CheckRowAl i gnnent () ;
}
}
private bool CheckD agonal Ali gnnment ()
{
bool result = fal se;
if (pegs[0, 0] == pegs[1, 1] && pegs[1, 1]
== pegs[2, 2]
&& pegs[2, 2] !'= String. Enpty)
{
result = true;
}
el se
if (pegs[0, 2] == pegs[1l, 1] && pegs[1l, 1]
== pegs[2, 0]
&& pegs[2, 0] != String. Enpty)
{
result = true;
}
}
return result;
}

Place peg after gamewin

| want to test the behavior if apeg is placed after game is over. | want to set the condition
for the game to be over directly instead of going through the public interface. How can |
do that? Well, how about writing the test in a nested class?

[Test Fi xture]
public class TickTackToeBoardPri vat eTest

{

private Ti ckTackToeBoard board;

[Set Up]

public void createBoard()

{
}

[Test,

board = new Ti ckTackToeBoard();

Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]

public voi d testPl acePegAfterGaneW n()

{

board. pegs[0, 0]

}

When | run NUnitGui, | get the following:

Bl Tick TackToeLib.dll - Nunit

File Wiew Project Tools Help
Tests |Eategories|

<

= Citernpl0@icodelTickTackToedppiTickTackToeLibibiniDeb
TickTackToeLib

TickTackToeTest
testCreateBoard
teztGetPegFromlnoccupiedPozition
testGetPegOutOfColumnRange
testietFPegCOutOfRowR ange
testPlaceFirstPeg
teztPlacePegdtCocupiedPostion
teztPlacePegOutOfColumnRange
teztPlaceFegOutOfRowR ange
teztPlacePegwithoutSetingFirstPlaver
teztPlaceSecondPeg
teztSetFirstPlaver
testSetFirstFlavertfterGameBeging
testSetFirstFlayerdgain
testwinGameByColumnalignment
teztwinGameByRowadlignment
teztwinGameByDiagonalalignment

TickTackToeBoard+TickTackToeBoardFrivate Test
teztPlacePeodfterGameiwiin

| |

= board. pegs[1, 1] =
board. pegs[2, 2] = "X';
board. Pl acePeg(1, 2);

Bun

=101 %]

| TickTackT oelib.dll

Tests ND[.HUT‘I1 Eonsola.Ermrl Eaﬂ_’l

B

L4

of
3

S

Completed

Test Cases: 17 Tests Run: 17 Failures : D

Time : 01402016

Note that the Nested class shows up at the bottom and wait a minute, all test cases have
succeeded. Hummm? | was expecting the most recent test; the one to test placing of a peg
after game has been won to fail. But it succeeds. That’s great; let’s move on, right? No, it
isimportant for atest to fail before it succeeds. The reason it may be succeeding is due to
some other failure and not the one you expected. In deed that is the case in this example:

Placing a break point within the testPlacePegAfterGameWin method and debugging
through the execution of NUnit, we fill find that the reason for success is that the
TickTackToeException is being thrown for the wrong reason — the first player has not
been set. Let’sfix that in the test and run the NUnitGui again.

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public voi d testPl acePegAfterGaneW n()

{
board. Fi rst Pl ayer Pegl sX = true;
board. pegs[0, 0] = board. pegs[1, 1]
= board. pegs[2, 2] = "X";
board. Pl acePeg(1, 2);
}

Now running the NUnitGui, we find that the test case fails:

Bl rickTackToeLib.dil - NURit = =10 =]

File Wiew Project Tools Help

Tests |Eate:gmies|

=0 Chiempl08icodelTickTackToedpptTickTackToeLlibtbiniDeb Bun | TickTackT oeLib.di
=8 TickTackToeLib

= @ TickTackToeTest SEEENENENREERRNENE

testCreateBoard

EITests NULFEun; Emsolﬁ.Enan Eaﬂ’l

teztGetPegFromlnoccupiedPozition
TickTackToel1b. TickTackToeBoard+T1 EkTE;I

testGetPegOutOfColumnRange
testietFPegCOutOfRowR ange

testPlaceFirstPeg

teztPlacePegdtCocupiedPostion =
teztPlacePegOutOfColumnRange .|1] _..I_I
teztPlaceFegOutOfRowR ange

teztPlacePegwithoutSetingFirstPlaver J
teztPlaceSecondPeg

teztSetFirstPlaver
testSetFirstFlavertfterGameBeging
testSetFirstFlayerdgain
testwinGameByColurmnélignment
teztwinGameByRowadlignment
teztwinGameByDiagonalalignment

= & TickTackToeBoard+TickTackToeBoardPrivateTest

U testPlacePegbfterGameiin

< | | 55 J_J

Completed .Test Cases: 17 Tests Run: 17 Failures : 1 Tirme : 01650216

That is good. Now we can write the code necessary for thistest to succeed.

public void PlacePeg(int row, int colum) {
if (GanmeOver)
t hrow new Ti ckTackToeBoar dExcepti on(
"Gane al ready over");

The NUnitGui shows that al tests are now running well. Our task list looks like this
Now:

Task List
1. Create board

Can we think of any more tests? It is time to move on to developing the user interface.
Let'stake alook at the entire code for the Test and for the TickTackToeBoard as well:

usi ng System
usi ng NUni t. Franework;

nanmespace Ti ckTackToelib

{

[Test Fi xt ure]
public class TickTackToeTest

{
private TickTackToeBoard board;
[Set Up]
public void createBoard()
{
board = new Ti ckTackToeBoard();
}
[Test]
public voi d testCreateBoard()
{
Assert. | sNot Nul | (board);
Assert . | sFal se(board. GanreOver) ;
}
[Test]

public void testSetFirstPlayer()
{

board. Fi r st Pl ayer Pegl sX = true;
Assert. | sTrue(board. FirstPl ayer Pegl sX);

}
[Test]
public void testSetFirstPlayerAgai n()
{
board. Fi rst Pl ayer Pegl sX = true;
Assert. | sTrue(board. FirstPl ayer Pegl sX);
board. Fi r st Pl ayer Pegl sX = fal se;
Assert .| sFal se(board. Fi rst Pl ayer Pegl sX);
}
[Test]
public void testPlaceFirstPeg()
{
board. Fi r st Pl ayer Pegl sX = true;
board. Pl acePeg(0, 1);
Assert .| sTrue(board. PegAt PositionlsX(0, 1));
}
[Test,

Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testPlacePegAt Cccupi edPosition()
{
board. Fi r st Pl ayer Pegl sX = true;
board. Pl acePeg(0, 1);
board. Pl acePeg(0, 1);

}

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testPl acePegQut O Col utmRange()
{
board. Fi r st Pl ayer Pegl sX = fal se;
board. Pl acePeg(1, 3);

}

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testPl acePegQut OF RowRange()

{
board. Fi rst Pl ayer Pegl sX = fal se;
board. Pl acePeg(-1, 1);

}

[Test,

Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public voi d testGet PegFromnmnoccupi edPosition()

{
board. Fi rst Pl ayer Pegl sX = fal se;

boar d. PegAt Posi tionl sX(0, 1);
}

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testGet PegQut O Col utmRange()

board. Fi r st Pl ayer Pegl sX = fal se;
boar d. PegAt Posi tionl sX(0, 3);

}

[Test,
Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testGet PegQut O RowRange()

{
board. Fi r st Pl ayer Pegl sX = fal se;
boar d. PegAt Posi tionl sX(-2, 1);

}

[Test,

Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testSetFirstPlayer Aft er GaneBegi ng()

{

board. Fi rst Pl ayer Pegl sX = fal se;
board. Pl acePeg(0, 1);
board. Fi rst Pl ayer Pegl sX = true;
}
[Test,

Expect edExcepti on(typeof (Ti ckTackToeBoar dExcepti on))]
public void testPlacePegW t hout Setti ngFirstPlayer()

{
board. Pl acePeg(0, 1);

}
[Test]
public void testPl aceSecondPeg()
{
board. Fi rst Pl ayer Pegl sX = fal se;
board. Pl acePeg(0, 1);
Assert .| sFal se(board. PegAt PositionlsX(0, 1));
board. Pl acePeg(1, 2);
Assert. | sTrue(board. PegAt PositionlsX(1, 2));
}
[Test]

public void test WnGanmeByCol utmAl i gnment ()
{
board. Fi rst Pl ayer Pegl sX = fal se;
board. Pl acePeg(0, 0); // "O
board. Pl acePeg(1, 2);
board. Pl acePeg(1, 0); // "O
board. Pl acePeg(2, 2);
board. Pl acePeg(2, 0); // "O
Assert .| sTrue(board. GaneQver);

}

[Test]

public void test WnGanmeByRowAl i gnnent ()

{
board. Fi rst Pl ayer Pegl sX = true;
board. Pl acePeg(1, 0); // "X"
board. Pl acePeg(0, 2);

board. Pl acePeg(1, 2); // "X"
board. Pl acePeg(2, 0);
board. Pl acePeg(1, 1); // "X"
Assert. | sTrue(board. GaneQver);

}

[Test]

public void test WnGanmeByDi agonal Al i gnment ()

{
board. Fi rst Pl ayer Pegl sX = true;
board. Pl acePeg(0, 2); // "X'
board. Pl acePeg(0, 0);
board. Pl acePeg(1, 1); // "X"
board. Pl acePeg(2, 2);
board. Pl acePeg(2, 0); // "X'
Assert. | sTrue(board. GameQver);

}

usi ng System
usi ng NUni t. Franework;

nanespace Ti ckTackToelLib

public class TickTackToeBoard

{
private bool NextPlayerlskX;
private string[,] pegs
= new string[,] {{"", "", }ooAq
private bool ganeStarted = fal se
private bool firstPlayerSet = fa

public bool GameOver

{
get
{
return CheckDi agonal Al i gnnment ()
|| CheckCol umAl i gnment ()
|| CheckRowAl i gnnent () ;
}
}
private bool CheckD agonal Ali gnnment ()
{

bool result = fal se;

if (pegs[0, 0] == pegs[1l, 1] && pegs[1l, 1]
== pegs[2, 2]
&& pegs[2, 2] != String. Enpty)

result = true;

el se

"

if (pegs[0, 2] == pegs[1l, 1] && pegs[1l, 1]
== pegs[2, 0]
&& pegs[2, 0] != String. Enpty)

{
result = true;
}
}
return result;
}
private bool CheckRowAlignnent ()
{
bool result = fal se;
for(int i = 0; i < 3; i++4)
{
if (pegs[i, 0] == pegs[i, 1] && pegs[i, 1]
== pegs[i, 2] &&
pegs[i, 2] != String. Enpty)
{
result = true;
br eak;
}
}
return result;
}

private bool CheckCol umAlignment ()

bool result = fal se;
for(int i = 0; i < 3; i++4)

if (pegs[0, i] == pegs[1l, i] && pegs[1, i]
== pegs[2, i] &&
pegs[2, i] != String. Enpty)

{
result = true;
br eak;
}
}
return result;
}
publ i c bool FirstPlayerPeglsX
{
get { return NextPlayerlsX; }
set
{

if (ganmeStarted)
t hrow new Ti ckTackToeBoar dExcepti on(
"CGane has begun");

Next Pl ayer | sX = val ue;
firstPlayerSet = true;

}

private void CheckRange(int row, int columm)

if(row< 0 |] row > 2)
t hrow new Ti ckTackToeBoar dExcepti on(
"Row out of range");

if (colum < 0 || colum > 2)
t hrow new Ti ckTackToeBoar dExcepti on(
"Col um out of range");

}

public void PlacePeg(int row, int colum)

if (GanmeOver)
t hrow new Ti ckTackToeBoar dExcepti on(
"Gane al ready over");

if (!firstPl ayerSet)
t hrow new Ti ckTackToeBoar dExcepti on(
"First player not set");

CheckRange(row, colum);
if (pegs[row, colum] != String. Enpty)
{

t hrow new Ti ckTackToeBoar dExcepti on(
"Posi tion occupied");

}

pegs[row, colum] = "0O';
if (NextPlayerlsX) pegs[row, colum] = "X";

Next Pl ayer| sX = ! Next Pl ayer | sX;

ganeStarted = true;

}

publ i c bool PegAtPositionlsX(int row, int colum)

{

CheckRange(row, colum);

if (pegs[row, colum] == "")
t hrow new Ti ckTackToeBoar dExcept i on(
“Position enmpty");

return pegs[row, colum] == "X";

}

[Test Fi xture]
public class TickTackToeBoardPri vat eTest

{

private Ti ckTackToeBoard board;

[Set Up]
public void createBoard()

{
}

[Test,

Expect edExcepti on(t ypeof (Ti ckTackToeBoar dException))]
public voi d testPl acePegAfterGaneW n()

board = new Ti ckTackToeBoard();

{
board. Fi r st Pl ayer Pegl sX = true;
board. pegs[0, 0] = board. pegs[1, 1]
= board. pegs[2, 2] = "X';
board. Pl acePeg(1, 2);
}
}
}
}
The Ul

The interesting part of this exercise is that the middle tier business logic is pretty solid. It
isasrobust asit could be (assuming our tests are fairly complete). And we achieved that
without writing any Ul code! Typically, the above exercise (building the library) takes

about one hour for this example, while discussing the issues with a group of seven to
fifteen attendees.

It took only 8 minutes to build the Ul from scratch! Here is the Ul:

We will create a windows application project named TickTackToe with in the current
blank solution. In the Form class, we will place button as shown here:

B9 TickTackToe - Microsoft ¥

File Edit “iew Project E

H-ia-

TickTackToeTest,cs | TickT:
[m] O m|

ERE -0

pdutu | [alal §);

Nine buttons have been placed. We will give names for the buttons as button R_C where
Ristherow (0, 1 or 2) and C is the column (0O, 1 or 2). This will allow us to write an
handler that can be used to process the click events on the buttons as shown below:

private Ti ckTackToeBoard board = new Ti ckTackToeBoard();

private void Fornl_Load(object sender,

{

}

button 0 0.d
+= new
button 0 1.d
+= new
button 0 2.C
+= new

button 1 0.dC
+= new
button 1 1.d
+= new
button 1 2.d
+= new

button 2 0.d
+= new
button 2 1.d
+= new
button 2 2.
+= new

boar d. Fi r st Pl
/1Setting fir

i ck

Syst em Event Args e)

Event Handl er (Handl eBut t onEvent) ;

i ck

Event Handl er (Handl eBut t onEvent) ;

i ck

Event Handl er (Handl eBut t onEvent) ;

i ck

Event Handl er (Handl eBut t onEvent) ;

i ck

Event Handl er (Handl eBut t onEvent) ;

i ck

Event Handl er (Handl eBut t onEvent) ;

i ck

Event Handl er (Handl eBut t onEvent) ;

i ck

Event Handl er (Handl eBut t onEvent) ;

i ck

Event Handl er (Handl eBut t onEvent) ;

ayer Pegl sX = true;
st player to be X

/'l You can easily inplenent

// a nenu to

nmodi fy this.

private voi d Handl eButtonEvent (obj ect sender,

{

try
{

i f(!board. GaneQver)

{ _
[
[

Button theButton =
string nane =

r

colum =

board. Pl acePeg(row, colum);

t

nt row,
nt col um;

ow = Convert. Tol nt 32(

sender
t heBut t on. Nane;

Not shown here.

Event Args e)

as Button;

name. Split(new char[]{" _'})[1]);

Convert. Tol nt 32(

name. Split(new char[]{" _'})[2]);

heButton. Text = "O';

i f (board. PegAt PositionlsX(row, colum))

t heButt on. Text =

NG

t heBut t on. Enabl ed = fal se;

i
{

f (board. GameQver)

MessageBox. Show(
Congr at ul ati ons,

whoever placed " +

theButton. Text + " won!");

}
}
cat ch(Exception ex)
{
MessageBox. Show ex. Message) ;
}

}

The game in action:

8 or MU T3] | or U] | 8 or T 8 or- T=T | = or-l=TEd

s] s] s] s] s

; ol | <

]]]] Congratulations, whoever placed & wan!

Advant age of Layering

| was teaching a course recently and went through this exercise at which point an
enthusiastic set of attendees asked me to put together an ASP.NET application to play
tick tack toe. Even though it may not be best to develop it as a web application, to
illustrate the advantage, we threw in an ASP.NET application. We moved around just a
little bit from the Windows Ul into another middle tier Utility class to avoid code
duplication and within about five minutes we had ASP.NET version of tick tack toe
running, with no change to the TickTackToeLib. | can't over emphasize the benefit of
good separation and layering. What's interesting is that TDD (and TFC) naturally leads
us into that.

VWl |, what about keeping the score
In this iteration we did not cover that. We will do that in the next iteration and that’'s a
good place to talk about Mock objects. That will be discussed in Part |1.

Benefits from TFC
There are several benefits that one could see from an approach like this:

* It smplifiesthe design
» Completely revert the way we develop

* Makes us think about how our object would be used

* Helpsusdevelop better interfaces that are easier to use

» Would change the way we perceive things

* Makesthe code easily testable

* It decouples our code from its surroundings

* Servesasinvaluable form of documentation

» Naturally partitions the system into layers

* Makesthe code robust

» |t gives an good opportunity for us to think of the failures and what we need to
accommodate

» |t provides a safety net as we refactor the code — the test cases are our angels

* It smply booststhe confidence in our code

Principles followed so far
We followed a few principles in this example: YAGNI and DRY principle. We will see
how other principles come into play in Part 11.

General Cuidelines

OK, we wrote our tests and every thing is working great. Then some one draws attention
to abug in the code. Of course we feel pretty embarrassed when that happens and want to
fix the bug right away. But wait, do not fix the bug. First write a test code that will fail
because of the bug. Then fix the bug so that the test will now succeed. The advantage of
this is if some other change, modification or addition to the code results in the same bug
creeping in later, the test angel will catch that.

Also, | ran into this situation on a project and learnt this lesson. | had over fifty test cases
for my code running successfully before | gave the code for integration. The person
integrating was having problems. Each time he said the code does not work, all that | had
to do was show him the relevant test code. After a couple of hours and several calls to
“no it does not work,” | looked at one situation and | was some what puzzled. The way he
was accessing my code looked pretty reasonable and it should work, but did not. |
though, “Hum, did | forget to write atest for that? When | opened the project and looked
at thetests, | found that | did have atest for it! So, what is wrong? Eventually we figured
out that | was running on Windows 2003 while he was running on Windows XP. Digging
into the MSDN documentation | eventually found that that particular functionality | was
using worked differently on these two versions of windows. Lesson learnt: Run your unit
tests on all supported platforms. But that could get tedious, isn’t it? No, not if we use
continuous integration aswe will see in Part |11 of this article.

Here are some things that we need to keep in mind while writing out test cases:

* Red/Green/Refactor should be our mantra

» Stay one step away from Green at all times — do not make many changes at once
» Place the tests near the code (in same project, some tests as nested as well)

» Isolate your tests — failure of one should not affect the other

* Writewith assert in mind

* Writeates for abug you find
* Do not refactor code without having test cases to support
* Testonal your platforms

What’ s next ?

In this Part | we focused on Test First Coding. In Part 11 we will take a close look at
Mock objects and some frameworks for that. In Part I11 we will talk about continuous
integration and tools available for that as well.

Concl usi on

Unit testing is a way of design than verification. It simplifies our design. It makes the
code more testable. It improves robustness of code and our confidence. NUnit makes it
very easy to utilize the principles of Test Driven Development. The use of these
techniques and tools is gaining good momentum and | hope you will put these to good
use on your projects as well.

Your feedback
Tell it like it is. Did you like the article; was it useful, do you want to see more such
articles? Let us know, as that will motivate us to continue writing. Did you not like it?
Please tell us so we can improve on it. Your constructive criticism makes a difference.
Do you have suggestions for improvement? Please send those to use and we will consider
incorporating those.

Ref er ences

1. “Test-Driven Development By Example,” Ken Beck, Addison-Wesley.

2. “Test-Driven Development in Microsoft .NET,” James W. Newkirk, Alexei A.
Vorontsov.

3. “Agile Software Development, Principles, Practices and Patterns,” Robert C.
Martin, Prentice Hall.

4. *Refactoring Improving The Design Of Existing Code,” Martin Fowler, Addison-

Wesley.

“NUnit 2.2,” (NUnit-2.2.0.msi) at http://www.sourceforge.net/projects/nunit.

“Pragmatic Programmer — From Journeyman to Master,” Andy Hunt, Dave

Thomas, Addison-Wesley.

o Ul

