
Introduction to Java Persistence with Hibernate
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
JDBC is Java's solution for encapsulating the DBMS from the application code.
However, using it requires developers to write SQL queries and exposes the data model
to the application code. JDO is an effort to fully abstract and encapsulate the database
from the application code and it realizes that through byte code enhancement. One
alternate solution that is gaining popularity is Hibernate. In this article we present an
introduction to the Hibernate open source persistence framework using a simple example.
A Persistence Example
Let’s start with a simple example. We will deal with two classes: Person and Dog. The
Dog class (Dog.java) is first shown below:

package com. agi l edevel oper ;

publ i c c l ass Dog
{
 pr i vat e l ong i d;
 pr i vat e St r i ng name;
 pr i vat e Per son f r i end;

 publ i c Dog() { }

 publ i c l ong get I d() { r et ur n i d; }
 publ i c voi d set I d(l ong t heI D) { i d = t heI D; }

 publ i c St r i ng get Name() { r et ur n name; }
 publ i c voi d set Name(St r i ng newName) { name = newName; }

 publ i c Per son get Fr i end() { r et ur n f r i end; }
 publ i c voi d set Fr i end(Per son newFr i end) { f r i end = newFr i end; }
}

A Dog has an id, a name and reference to a Person who is the Dog’s friend. It also has
getters and setters for each of the fields.

The Person class (Person.java) is next shown below:

package com. agi l edevel oper ;

i mpor t j ava. ut i l . * ;

publ i c c l ass Per son
{
 pr i vat e l ong i d;
 pr i vat e St r i ng f i r s t Name;
 pr i vat e St r i ng l ast Name;
 pr i vat e Set pet s = new HashSet () ;

 publ i c Per son() { }

 publ i c l ong get I d() { r et ur n i d; }
 publ i c voi d set I d(l ong t heNewI d) { i d = t heNewI d; }

 publ i c St r i ng get Fi r st Name() { r et ur n f i r s t Name; }
 publ i c voi d set Fi r st Name(St r i ng newFi r st Name)

{ f i r s t Name = newFi r st Name; }

 publ i c St r i ng get Last Name() { r et ur n l ast Name; }
 publ i c voi d set Last Name(St r i ng newLast Name)
 { l ast Name = newLast Name; }

 publ i c Set get Pet s() { r et ur n pet s; }
 publ i c voi d set Pet s(Set t hePet s) { pet s = t hePet s; }

 publ i c voi d addPet (Dog aPet)
 {
 i f (! pet s. cont ai ns(aPet))
 {
 pet s. add(aPet) ;
 }
 }

 publ i c voi d r emovePet (Dog aDog)
 {
 pet s. r emove(aDog) ;
 }
}

The Person class has an id, the first and last name followed by the set of pets. Methods of
the Person class (addPet, getPet, setPets, removePet) will allow us to manage the Dogs
that a Person may have as Pets.

Looking at the code above, there is no relevant code as far as persistence is concerned.
The code to persist is kept separate in a mapping file. Let’s first take a look at the
Dog.hbm.xml file:

<?xml ver s i on=" 1. 0" ?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
 " - / / Hi ber nat e/ Hi ber nat e Mappi ng DTD/ / EN"
 " ht t p: / / hi ber nat e. sour cef or ge. net / hi ber nat e- mappi ng- 2. 0. dt d" >

<hi ber nat e- mappi ng>
 <cl ass name=" com. agi l edevel oper . Dog" t abl e=" dog" >
 <i d name=" i d" col umn=" i d" t ype=" l ong" unsaved- val ue=" 0" >
 <gener at or c l ass=" nat i ve" / >
 </ i d>
 <pr oper t y name=" name" col umn=" name" t ype=" st r i ng" / >
 <many- t o- one name=" f r i end"

c l ass=" com. agi l edevel oper . Per son" col umn=" per son_i d" / >
 </ c l ass>
</ hi ber nat e- mappi ng>

This file maps the Java class to the persistence layer. It says that an object of Dog class
will be stored in a dog table. Further, it says that the id field and the name field of Dog
maps to the id column and the name column in the dog table, respectively. It then defines
the relationship between the Person and the Dog, though the friend field as a many-to-one
relationship to the persistent column named person_id which acts as a foreign key.

Let’s now take a look at the Person.hbm.xml mapping file:

<?xml ver s i on=" 1. 0" ?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
 " - / / Hi ber nat e/ Hi ber nat e Mappi ng DTD/ / EN"
 " ht t p: / / hi ber nat e. sour cef or ge. net / hi ber nat e- mappi ng- 2. 0. dt d" >

<hi ber nat e- mappi ng>
 <cl ass name=" com. agi l edevel oper . Per son" t abl e=" per son" >
 <i d name=" i d" col umn=" i d" t ype=" l ong" unsaved- val ue=" 0" >
 <gener at or c l ass=" nat i ve" / >
 </ i d>
 <pr oper t y name=" f i r st Name"

col umn=" f i r st _name" t ype=" st r i ng" / >
 <pr oper t y name=" l ast Name"

col umn=" l ast _name" t ype=" st r i ng" / >
 <set name=" pet s" cascade=" al l " i nver se=" t r ue" l azy=" t r ue" >
 <key col umn=" per son_i d" / >
 <one- t o- many c l ass=" com. agi l edevel oper . Dog" / >
 </ set >
 </ c l ass>
</ hi ber nat e- mappi ng>

This file maps the Person class to the Person table. Apart from the straight forward
mapping of the id, firstName and lastName fields, it also defines the set of pets as a one-
to-many relationship to the objects of Dog class. Of special interest is the value of the
lazy attribute. A value of true indicates that when a Person object is fetched from the
database into memory, the related pets (Dog objects) need not be fetched. These are
fetched if and only if requested. This on demand fetch may be desirable under situations
where not all related objects are used or accessed in an application scenario.

The above two mapping files help us map the objects to the database tables. However,
which database do we connect to? This information is provided in yet another
configuration or property file named here as hibernate.properties:

hi ber nat e. connect i on. user name = CONNECTI ONUSER
hi ber nat e. connect i on. passwor d = Passwor dFor CONNECTI ONUSER
hi ber nat e. connect i on. dr i ver _cl ass =

DRI VER_FOR_DATABASE
hi ber nat e. connect i on. ur l

 URL_FOR_CONNECTI ON_TO_DB
hi ber nat e. di al ect = HI BERNATE_CLASS_FOR_DI ALECT
hi ber nat e. show_sql = t r ue

The hibernate.show_sql is useful for debugging purpose. As the program executes, you
can take a look at the generated SQL. You may use any relational database of your choice
like Oracle, MySql, SQL Server, etc. In this example, I will use the SQL Server. The
hibernate.properties file modified to use SQL Server is shown below:

hi ber nat e. connect i on. user name = sa
hi ber nat e. connect i on. passwor d = PasswordForSA
hi ber nat e. connect i on. dr i ver _cl ass =

 com. mi cr osof t . j dbc. sql ser ver . SQLSer ver Dr i ver
hi ber nat e. connect i on. ur l
 j dbc: mi cr osof t : sql ser ver : / / HOSTNAME: 1433; Dat abaseName=Per sonPet sDB
hi ber nat e. di al ect = net . sf . hi ber nat e. di al ect . SybaseDi al ect
hi ber nat e. show_sql = t r ue

We will get back to executing this example shortly.

What does Hibernate offer?

Hibernate is an open source (released under LPGL) product for providing seamless
persistence for Java objects. It uses reflections and yet provides excellent performance. It
has support for over 30 different dialects (like drivers for different databases). It provides
a rich query language to access objects, provide caching and JMX support. The is
intended to provide high performance transparent persistence with low resource
contention and small foot print.

JDO uses byte code enhancement while Hibernate uses runtime reflection to determine
persistent properties of classes. A mapping property or configuration file is used to
generate database schema and provide persistence. Figure below shows the mapping
mechanism used by Hibernate:

A SessionFactory creates a Session object for transaction in a single threaded interaction.
The Session acts as an agent between the application and the data store. This is the object

you will interact with to create, update and load objects. A Query class allows us to
manage our queries and allows for parameterized queries as well.

Using Hibernate

Let us proceed with the example we started with. How do we create objects of Person and
Dog and make it persistent? The CreatePerson.java code shown below does just that:

package com. agi l edevel oper ;

i mpor t net . sf . hi ber nat e. * ;
i mpor t net . sf . hi ber nat e. cf g. * ;

publ i c c l ass Cr eat ePer son
{
 publ i c st at i c voi d mai n(St r i ng[] ar gs)
 {
 t r y
 {
 Conf i gur at i on conf i g = new Conf i gur at i on()
 . addCl ass(com. agi l edevel oper . Per son. c l ass)
 . addCl ass(com. agi l edevel oper . Dog. c l ass) ;

 Sessi onFact or y sessi onFact or y

= conf i g. bui l dSessi onFact or y() ;
 Sessi on sessi on = sessi onFact or y. openSessi on() ;
 Tr ansact i on t xn = sessi on. begi nTr ansact i on() ;

 Per son j ohn = new Per son() ;
 j ohn. set Fi r st Name(" John") ;
 j ohn. set Last Name(" Smi t h") ;

 Dog r over = new Dog() ;
 r over . set Name(" Rover ") ;
 j ohn. addPet (r over) ;
 r over . set Fr i end(j ohn) ;

 sessi on. save(j ohn) ;
 t xn. commi t () ;
 sessi on. c l ose() ;
 }
 cat ch(Except i on ex)
 {
 Syst em. out . pr i nt l n(" Er r or : " + ex) ;
 }
 }
}

A Configuration object is first created. This object is used to create the SessionFactory.
Each of the persistent types is introduced to the configuration object. The appropriate
mapping files (classname.hbm.xml) will be consulted at runtime. The SessionFactory is
used to open a Session, which in turn is used to start a transaction. Note how the objects
of Person and Dog are created without any regard to persistence. The objects of Person
(john) is finally made persistent by calling the save method on the Session object. Note

that the object of Dog (rover) will automatically be saved due to the cascade effect of
update on the Person object. The transaction is committed and the session is closed at the
end.

Let’s now look at an example of loading the object created above:

package com. agi l edevel oper ;

i mpor t net . sf . hi ber nat e. * ;
i mpor t net . sf . hi ber nat e. cf g. * ;

publ i c c l ass LoadPer son
{
 publ i c st at i c voi d mai n(St r i ng[] ar gs)
 {
 t r y
 {
 Conf i gur at i on conf i g = new Conf i gur at i on()
 . addCl ass(com. agi l edevel oper . Per son. c l ass)
 . addCl ass(com. agi l edevel oper . Dog. c l ass) ;

 Sessi onFact or y sessi onFact or y

= conf i g. bui l dSessi onFact or y() ;
 Sessi on sessi on = sessi onFact or y. openSessi on() ;
 Tr ansact i on t xn = sessi on. begi nTr ansact i on() ;

 Per son j ohn = new Per son() ;
 session.load(john, new Long(3));

 Syst em. out . pr i nt l n(" * * * * * * * * * * "

+ j ohn. get Fi r st Name() + " "
+ j ohn. get Last Name()) ;

 j ava. ut i l . I t er at or i t er = j ohn. get Pet s() . i t er at or () ;

 whi l e(i t er . hasNext ())
 {
 Dog dog = (Dog) i t er . next () ;
 Syst em. out . pr i nt l n(" * * * * * * * * * * "

+ dog. get Name()) ;
 }
 t xn. commi t () ;
 sessi on. c l ose() ;
 }
 cat ch(Except i on ex)
 {
 Syst em. out . pr i nt l n(" Er r or : " + ex) ;
 }
 }
}

In the above example, the load method on the Session object is called to fetch the object
of Person. Note how a Person object to be loaded is created and sent to the load method
along with the value of the primary key of the Person object. When the load returns the

Person object, the Dog object(s) related to the Person have not been loaded. This is due to
the lazy (= true) attribute set in the mapping file. The Dog object is actually loaded on
demands. This of course requires that the session be open until the Dog is fetched. One
may easily test this by calling session.close() right after the session.load()statement. If the
lazy load is set to false, there will not be any error. However, if lazy load is set to true, an
exception is thrown.

The following code excerpt shows how to find a person (in FindPerson.java):

St r i ng quer y = " f r om Per son p wher e p. l ast Name = ' Smi t h' " ;
j ava. ut i l . Li st per sons = sessi on. f i nd(quer y) ;

f or (i nt i = 0; i < per sons. s i ze() ; i ++)
{
 Per son aPer son = (Per son) (per sons. get (i)) ;
 Syst em. out . pr i nt l n(" * * * * * * * * * * " + aPer son. get Fi r st Name() + " " +
 aPer son. get Last Name()) ;

 j ava. ut i l . I t er at or i t er = aPer son. get Pet s() . i t er at or () ;

 whi l e(i t er . hasNext ())
 {
 Dog dog = (Dog) i t er . next () ;
 Syst em. out . pr i nt l n(" - - - - - - - - - - - - - - - " + dog. get Name()) ;
 }
}

Here all persons with “Smith” as the last name are fetched from the database. The
Hibernate Query Language (HQL) is useful to specify the query based on properties.
Note how, in the above query, the “ lastName” property is specified on an object reference
“p” of Person. The query is based on fields of object instead of columns in the database.

Pros and Cons of Hibernate
Hibernate provides highly efficient transparent persistence for Java objects. It leaves
behind a very small footprint; has low resource requirements. It provides for high
concurrency. Caching and lazy loading can further improve performance. Also, instead of
saving an entire object, it updates only modified fields of an object. This leads to more
optimized and efficient code than coding with JDBC. Further given a mapping property
file, automatic code generation and schema generation tools are also available. On the
downside, mapping an object to multiple tables is harder to realize.

Running the Example
We had to download the SQL Server JDBC driver from microsoft’s web site. The related
jar files (three in all) were copied to the Hibernate’s lib directory. A database named
PersonPetsDB was created with two tables as shown below:

Some initial values were entered into these two tables as shown below:

The following Ant build.xml script was used to compile and run the program:

<pr oj ect name=" Hi ber nat e" def aul t =" r un" >

 <pr oper t y name=" HBM- HOME" l ocat i on=" / pr ogr ams/ hi ber nat e- 2. 1" / >
 <pr oper t y name=" bui l d. di r " val ue=" out put " / >
 <pr oper t y name=" bui l d. c l asses. di r " val ue=" ${ bui l d. di r } / c l asses" / >
 <pr oper t y name=" sr c. di r " val ue=" sr c" / >
 <pr oper t y name=" cnf g. di r " val ue=" cnf g" / >

 <pat h i d=" cl asspat h. base" >
 <pat hel ement l ocat i on=" ${ bui l d. c l asses. di r } " / >
 <pat hel ement l ocat i on=" ${ HBM- HOME} / hi ber nat e2. j ar " / >
 <f i l eset di r =" ${ HBM- HOME} / l i b" i nc l udes=" * * / * . j ar " / >
 </ pat h>

 <t ar get name=" pr epar e" >
 <mkdi r di r =" ${ bui l d. di r } " / >
 </ t ar get >

 <t ar get name=" cl ean" >
 <del et e di r =" ${ bui l d. di r } " / >
 </ t ar get >

 <t ar get name=" compi l e" depends=" cl ean" >
 <mkdi r di r =" ${ bui l d. c l asses. di r } " / >
 <j avac sr cdi r =" sr c"
 dest di r =" ${ bui l d. c l asses. di r } "
 debug=" on"
 depr ecat i on=" on"
 opt i mi ze=" of f " >
 <cl asspat h r ef i d=" cl asspat h. base" / >
 </ j avac>
 <copy f i l e=" ${ cnf g. di r } / Per son. hbm. xml "
t odi r =" ${ bui l d. c l asses. di r } / com/ agi l edevel oper "
 over wr i t e=" t r ue" / >
 <copy f i l e=" ${ cnf g. di r } / Dog. hbm. xml "
t odi r =" ${ bui l d. c l asses. di r } / com/ agi l edevel oper "
 over wr i t e=" t r ue" / >
 <copy f i l e=" ${ cnf g. di r } / hi ber nat e. pr oper t i es"
t odi r =" ${ bui l d. c l asses. di r } "
 over wr i t e=" t r ue" / >
 </ t ar get >

 <t ar get name=" r unCr eat ePer son" depends=" compi l e" >

 <j ava c l assname=" com. agi l edevel oper . Cr eat ePer son"
f or k=" t r ue" di r =" ${ bui l d. c l asses. di r } " >
 <cl asspat h r ef i d=" cl asspat h. base" / >
 </ j ava>
 </ t ar get >

 <t ar get name=" r unLoadPer son" depends=" compi l e" >
 <j ava c l assname=" com. agi l edevel oper . LoadPer son" f or k=" t r ue"
di r =" ${ bui l d. c l asses. di r } " >
 <cl asspat h r ef i d=" cl asspat h. base" / >
 </ j ava>
 </ t ar get >

 <t ar get name=" r unFi ndPer son" depends=" compi l e" >
 <j ava c l assname=" com. agi l edevel oper . Fi ndPer son" f or k=" t r ue"
di r =" ${ bui l d. c l asses. di r } " >
 <cl asspat h r ef i d=" cl asspat h. base" / >
 </ j ava>
 </ t ar get >

 <t ar get name=" r un" depends=" r unCr eat ePer son" >
 </ t ar get >
</ pr oj ect >

Running ant, compiled the code and ran the CreatePerson class. This added a Person
(John Smith) to the person table and his pet (rover) to the dog table.

Running ant runLoadPerson produced the following result:
[j ava] Hi ber nat e: sel ect per son0_. i d as i d0_, per son0_. f i r s t _name as
f i r s t _name0_, per son0_. l ast _name as l ast _name0_ f r om per son per son0_
wher e per son0_. i d=?
[java] ********** John Smith
[j ava] Hi ber nat e: sel ect pet s0_. i d as i d__, pet s0_. per son_i d as
per son_i d__, pet s0_. i d as i d0_, pet s0_. name as name0_, pet s0_. per son_i d
as per son_i d0_ f r om dog pet s0_ wher e pet s0_. per son_i d=?
[java] ********** Rover

The output shows the SQL generated as well. This is due to the hi ber nat e. show_sql =

t r ue in the hibernate.properties file. Setting this property to false will suppress these
messages.

Moving the txn.commit() and session.close() statements to right after the session.load()
call results in the following error:

[j ava] Hi ber nat e: sel ect per son0_. i d as i d0_, per son0_. f i r s t _name as
f i r s t _name0_, per son0_. l ast _name as l ast _name0_ f r om per son per son0_
wher e per son0_. i d
=?
[j ava] * * * * * * * * * * John Smi t h
[java] Error: net.sf.hibernate.LazyInitializationException: Failed to
lazily initialize a collection - no session or session was closed

However, if we modify the lazy attribute in person.hbm.xml to false, we get the following
result:
[j ava] Hi ber nat e: sel ect per son0_. i d as i d0_, per son0_. f i r s t _name as
f i r s t _name0_, per son0_. l ast _name as l ast _name0_ f r om per son per son0_
wher e per son0_. i d
=?
[j ava] Hi ber nat e: sel ect pet s0_. i d as i d__, pet s0_. per son_i d as
per son_i d__, pet s0_. i d as i d0_, pet s0_. name as name0_, pet s0_. per son_i d
as per son_i d0_ f r om dog pet s0_ wher e pet s0_. per son_i d=?
[java] ********** John Smith
[java] ********** Rover

Note the difference between this output and the earlier output with lazy = true and
txn.commit() and session.close() calls at the end. The lazy loading happens on the call to
getPets() on the Person object.

Now, we run ant runFindPerson. The output we get is shown below:
[j ava] Hi ber nat e: sel ect per son0_. i d as i d, per son0_. f i r s t _name as
f i r s t _name, per son0_. l ast _name as l ast _name f r om per son per son0_ wher e
(per son0_. l ast _name=' Smi t h')
[java] ********** Sara Smith
[j ava] Hi ber nat e: sel ect pet s0_. i d as i d__, pet s0_. per son_i d as
per son_i d__, pet s0_. i d as i d0_, pet s0_. name as name0_, pet s0_. per son_i d
as per son_i d0_ f r om dog pet s0_ wher e pet s0_. per son_i d=?
[java] --------------- Spencer
[java] ********** John Smith
[j ava] Hi ber nat e: sel ect pet s0_. i d as i d__, pet s0_. per son_i d as
per son_i d__, pet s0_. i d as i d0_, pet s0_. name as name0_, pet s0_. per son_i d
as per son_i d0_ f r om dog pet s0_ wher e pet s0_. per son_i d=?
[java] --------------- Rover

Conclusion
While JDBC provides encapsulation of your Java code from the variations of database
management systems, it unfortunately does not isolate the code from SQL queries.
Hibernate provides transparent object persistence using runtime reflection. The code is
far more isolated from the persistence mapping as this is kept separate in a mapping file.
The application code is a lot cleaner and simpler to develop. All this comes with higher
performance and small footprint as well.

References

1. http://www.hibernate.org
2. http://www.sourceforge.net/projects/hibernate

