Introduction to Java Persistence with Hibernate
Venkat Subramaniam
venkats@agiledevel oper.com
http://www.agiledevel oper.com/downl oad.aspx

Abstract

JDBC is Javas solution for encapsulating the DBMS from the application code.
However, using it requires developers to write SQL queries and exposes the data model
to the application code. JDO is an effort to fully abstract and encapsulate the database
from the application code and it realizes that through byte code enhancement. One
aternate solution that is gaining popularity is Hibernate. In this article we present an

introduction to the Hibernate open source persistence framework using a simple example.
A Persi stence Exanpl e

Let's start with a simple example. We will deal with two classes. Person and Dog. The
Dog class (Dog.java) isfirst shown below:

package com agi | edevel oper;

public class Dog

{

private long id;

private String nane;

private Person friend;

public Dog() {}

public long getld() { return id; }

public void setld(long thelD) { id = thelD; }

public String getNanme() { return nanme; }

public void setName(String newNane) { nanme = newNane; }

public Person getFriend() { return friend; }

public void setFriend(Person newrriend) { friend = newFriend; }
}

A Dog has an id, a name and reference to a Person who is the Dog's friend. It also has
getters and setters for each of the fields.

The Person class (Person.java) is next shown below:

package com agi | edevel oper;
i mport java.util.*;

public class Person
{
private long id;
private String firstNane;
private String | ast Nane;
private Set pets = new HashSet();

public Person() {}

public long getld() { return id; }
public void setld(long theNewid) { id = theNewid; }

public String getFirstNanme() { return firstNanme; }
public void setFirstName(String newFirst Nane)
{ firstNane = newFirstNanme; }

public String getLastNane() { return |astNane; }
public void setlLast Name(String newlLast Nane)
{ last Name = newlLast Nane; }

public Set getPets() { return pets; }
public void setPets(Set thePets) { pets = thePets; }

public void addPet (Dog aPet)

{
if (!pets.contains(aPet))
pets. add(aPet);
}
}
public void renovePet (Dog aDog)
{
pets.renove(aDog);
}

}

The Person class has an id, the first and last name followed by the set of pets. Methods of
the Person class (addPet, getPet, setPets, removePet) will alow us to manage the Dogs
that a Person may have as Pets.

Looking at the code above, there is no relevant code as far as persistence is concerned.
The code to persist is kept separate in a mapping file. Let's first take a look at the
Dog.hbm.xml file:

<?xm version="1.0"7?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-//Hi bernat e/ H bernate Mappi ng DTD/ / EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-2. 0. dtd">

<hi ber nat e- mappi ng>
<cl ass nane="com agi | edevel oper. Dog" tabl e="dog">
<id name="id" colum="id" type="Ilong" unsaved-val ue="0">
<generator class="native" />
</id>
<property nane="nanme" colum="name" type="string"/>
<many-to-one nane="friend"
cl ass="com agi | edevel oper. Person" col um="person_id" />
</ cl ass>
</ hi ber nat e- mappi ng>

This file maps the Java class to the persistence layer. It says that an object of Dog class
will be stored in a dog table. Further, it says that the id field and the name field of Dog
maps to the id column and the name column in the dog table, respectively. It then defines
the relationship between the Person and the Dog, though the friend field as a many-to-one
relationship to the persistent column named person_id which acts as aforeign key.

Let’snow take alook at the Person.hbm.xml mapping file:

<?xm version="1.0"7?>

<! DOCTYPE hi ber nat e- nappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD// EN'
"http://hibernate. sourceforge. net/hi bernat e-mappi ng-2. 0. dtd">

<hi ber nat e- mappi ng>
<cl ass nane="com agi | edevel oper. Person" tabl e="person">
<id name="id" colum="id" type="Ilong" unsaved-val ue="0">
<generator class="native" />
</id>
<property nane="first Nane"
colum="first_name" type="string"/>
<property nane="|ast Nane"
col um="1ast _nane" type="string"/>
<set nane="pets" cascade="all" inverse="true" lazy="true">
<key col um="person_id"/>
<one-to-nmany cl ass="com agi | edevel oper. Dog"/ >
</set>
</cl ass>
</ hi ber nat e- nappi ng>

This file maps the Person class to the Person table. Apart from the straight forward
mapping of the id, firstName and lastName fields, it also defines the set of pets as a one-
to-many relationship to the objects of Dog class. Of special interest is the value of the
lazy attribute. A value of true indicates that when a Person object is fetched from the
database into memory, the related pets (Dog objects) need not be fetched. These are
fetched if and only if requested. This on demand fetch may be desirable under situations
where not all related objects are used or accessed in an application scenario.

The above two mapping files help us map the objects to the database tables. However,
which database do we connect to? This information is provided in yet another
configuration or property file named here as hibernate.properties:

hi ber nat e. connecti on. user nane CONNECT| ONUSER
hi ber nat e. connecti on. password Passwor dFor CONNECTI ONUSER
hi ber nat e. connection. driver_class =
DRI VER_FOR_DATABASE

hi ber nat e. connecti on. url

URL_FOR_CONNECTI ON_TO DB
hi ber nat e. di al ect = HI BERNATE _CLASS FOR DI ALECT
hi ber nat e. show _sql = true

The hibernate.show_sql is useful for debugging purpose. As the program executes, you
can take alook at the generated SQL. Y ou may use any relational database of your choice
like Oracle, MySql, SQL Server, etc. In this example, | will use the SQL Server. The
hibernate.properties file modified to use SQL Server is shown below:

hi ber nat e. connecti on. usernanme = sa
hi ber nat e. connecti on. password = Passwor dFor SA
hi ber nat e. connection. driver_class =
com m crosoft.jdbc. sql server. SQ.ServerDri ver

hi ber nat e. connecti on. url

jdbc: microsoft: sqgl server://HOSTNAME: 1433; Dat abaseName=Per sonPet sDB
hi bernat e. di al ect = net. sf. hi bernate. di al ect. SybaseDi al ect
hi ber nat e. show_sql = true

We will get back to executing this example shortly.
What does Hibernate offer?

Hibernate is an open source (released under LPGL) product for providing seamless
persistence for Java objects. It uses reflections and yet provides excellent performance. It
has support for over 30 different diaects (like drivers for different databases). It provides
a rich query language to access objects, provide caching and JMX support. The is
intended to provide high performance transparent persistence with low resource
contention and small foot print.

JDO uses byte code enhancement while Hibernate uses runtime reflection to determine
persistent properties of classes. A mapping property or configuration file is used to
generate database schema and provide persistence. Figure below shows the mapping
mechanism used by Hibernate:

%

— SessionFactory
Mapping
Documents
[Wraps JDBC Connection
gndieit Used by single thread
Spans DB TXN

A SessionFactory creates a Session object for transaction in a single threaded interaction.
The Session acts as an agent between the application and the data store. This is the object

you will interact with to create, update and load objects. A Query class alows us to
manage our queries and allows for parameterized queries as well.

Usi ng Hi bernate

Let us proceed with the example we started with. How do we create objects of Person and
Dog and make it persistent? The CreatePerson.java code shown below does just that:

package com agi | edevel oper;

i mport net.sf.hibernate.*;
i mport net.sf.hibernate.cfg.*;

public class CreatePerson

public static void main(String[] args)

{

try

{ _ _ _ _ _
Configuration config = new Configuration()

.addd ass(com agi | edevel oper. Person. cl ass)
. addd ass(com agi | edevel oper. Dog. cl ass);
Sessi onFactory sessi onFactory
= config. bui | dSessi onFactory();

Sessi on session = sessionFactory. openSessi on();
Transaction txn = session. begi nTransaction();
Person john = new Person();
j ohn. set Fi r st Nane("John");
j ohn. set Last Name("Smith");
Dog rover = new Dog();
rover. set Name(" Rover");
j ohn. addPet (rover) ;
rover.set Fri end(j ohn);
sessi on. save(j ohn);
txn.conmit();
sessi on. cl ose();

cat ch(Exception ex)

{
Systemout.printin("Error: " + ex);

}

}

}

A Configuration object is first created. This object is used to create the SessionFactory.
Each of the persistent types is introduced to the configuration object. The appropriate
mapping files (classname.hbm.xml) will be consulted at runtime. The SessionFactory is
used to open a Session, which in turn is used to start a transaction. Note how the objects
of Person and Dog are created without any regard to persistence. The objects of Person
(john) is finally made persistent by calling the save method on the Session object. Note

that the object of Dog (rover) will automatically be saved due to the cascade effect of
update on the Person object. The transaction is committed and the session is closed at the
end.

Let’s now look at an example of loading the object created above:

package com agi | edevel oper

i mport net.sf.hibernate.*;
i mport net.sf.hibernate.cfg.*;

public class LoadPerson
{
public static void main(String[] args)
{
try
{
Configuration config = new Configuration()

.addd ass(com agi | edevel oper. Person. cl ass)
. addd ass(com agi | edevel oper. Dog. cl ass);

Sessi onFactory sessi onFactory

= config. bui | dSessi onFactory();
sessi onFact ory. openSessi on() ;
sessi on. begi nTransaction();

Sessi on session =
Transaction txn =
Person john = new Person();

session. | oad(j ohn, new Long(3));

System out. printlp("*****x*kxxx u
+ john.getFirstNane() + " "
+ j ohn. get Last Narme()) ;

java.util.lterator iter = john.getPets().iterator();

whi | e(iter.hasNext())

{
Dog dog = (Dog) iter.next();
System out. print|n("***xxsxkxs »
+ dog. get Name()) ;
}
txn.conmit();
session. cl ose();

cat ch(Exception ex)

{
}

Systemout.printin("Error: " + ex);

}

In the above example, the load method on the Session object is called to fetch the object
of Person. Note how a Person object to be loaded is created and sent to the load method
along with the value of the primary key of the Person object. When the load returns the

Person object, the Dog object(s) related to the Person have not been loaded. Thisis dueto
the lazy (= true) attribute set in the mapping file. The Dog object is actually loaded on
demands. This of course requires that the session be open until the Dog is fetched. One
may easily test this by calling session.close() right after the session.load()statement. If the
lazy load is set to false, there will not be any error. However, if lazy load is set to true, an
exception is thrown.

The following code excerpt shows how to find a person (in FindPerson.java):

String query = "from Person p where p.lastNanme = "Smith'";
java.util.List persons = session.find(query);

for(int i = 0; i < persons.size(); i++)

{

Person aPerson = (Person)(persons.get(i));
Systemout.println("******x*x*x* " + gperson.getFirstName() + " " +

aPer son. get Last Nane()) ;
java.util.lterator iter = aPerson.getPets().iterator();

whi | e(iter.hasNext())

{
Dog dog = (Dog) iter.next();
Systemout.println("--------------- " + dog. get Name());

}

Here all persons with “Smith” as the last name are fetched from the database. The
Hibernate Query Language (HQL) is useful to specify the query based on properties.
Note how, in the above query, the “lastName” property is specified on an object reference
“p” of Person. The query is based on fields of object instead of columnsin the database.

Pros and Cons of Hi bernate

Hibernate provides highly efficient transparent persistence for Java objects. It leaves
behind a very small footprint; has low resource requirements. It provides for high
concurrency. Caching and lazy loading can further improve performance. Also, instead of
saving an entire object, it updates only modified fields of an object. This leads to more
optimized and efficient code than coding with JDBC. Further given a mapping property
file, automatic code generation and schema generation tools are also available. On the
downside, mapping an object to multiple tablesis harder to realize.

Runni ng the Exanpl e
We had to download the SQL Server JDBC driver from microsoft’s web site. The related
jar files (three in all) were copied to the Hibernate's lib directory. A database named

PersonPetsDB was created with two tables as shown below:

Column Mame Data Type Length | Allove Mulls |

Wili ink 4
first_mame varchar 50
last_name varchar 50 ;l

Columnz
Description
Default Yalue
Precision 10
Scale]
Identity Yes
Identiky Seed 1
Identity Increment |
Is RowiEwUia Mo
Forrmula
Collation

Column Mame

“iti Design Table ‘dog’ in 'PersonPetsDB" on

Data Type |Length | &llow Muls |

b2 i int 4
namnme wvarchar 50
person_id ink 4 ;I
Columnz
Description
Crefault Yaloe
Frecision 10
Srale 0
Tdentiky Yes
Identity Seed 1
L:Ientity Increment 1
1= RowiEtid Mo
Formula
Collation

Someinitial values were entered into these two tables as shown below:

'Fﬁi Data in Table 'person’ in ‘PersonPetsDB" on ‘(local)

id first name last name
Sara Srmikh
z Sam W'alker

id nane person_id
Spencer 1
z2 Snow 2

The following Ant build.xml script was used to compile and run the program:

<proj ect name="Hi bernate" default="run">

<property nane="HBM HOVE" | ocati on="/prograns/hi bernate-2.1" />

<property nane="build.dir" value="output" />

<property nanme="buil d.cl asses.dir" value="${build.dir}/classes"/>

<property nane="src.dir" value="src"/>
<property nane="cnfg.dir" value="cnfg"/>

<pat h id="cl asspat h. base">
<pat hel ement | ocati on="${buil d.classes.dir}" />

<pat hel ement | ocati on="${ HBM HOVE}/ hi ber nate2.j ar"
<fileset dir="${HBM HOVE}/li b" includes="**/*_jar"

</ pat h>

<t arget name="prepare">
<nkdir dir="${build.dir}" />
</target>

<target nanme="cl ean">
<delete dir="${build. dir}"/>
</target>

<target name="conpile" depends="cl ean">
<nmkdir dir="${build.classes.dir}"/>
<javac srcdir="src"
destdir="${build.classes.dir}"
debug="on"
deprecati on="on"
optimze="of f">
<cl asspath refi d="cl asspat h. base" />
</javac>
<copy file="${cnfg.dir}/Person. hbm xm "
todi r="%{buil d. cl asses. dir}/conf agi | edevel oper"
overwite="true" />
<copy file="${cnfg.dir}/Dog. hbm xm "
todi r="${build.classes.dir}/conf agil edevel oper"
overwite="true" />
<copy file="${cnfg.dir}/hibernate. properties"
todir="%{build.classes.dir}"
overwite="true" />
</target>

<target name="runCreat ePerson" depends="comnpile">

/>
/>

<java cl assnane="com agi | edevel oper. Creat ePer son"
fork="true" dir="${build.classes.dir}">
<cl asspath refi d="cl asspat h. base" />
</java>
</target>

<target name="runLoadPerson" depends="conpile">
<j ava cl assnanme="com agi | edevel oper. LoadPerson" fork="true"
dir="${build.classes.dir}">
<cl asspath refi d="cl asspat h. base" />
</java>
</target>

<t arget name="runFi ndPerson" depends="conpile">
<java cl assnane="com agi | edevel oper. Fi ndPer son" fork="true"
dir="${build.classes.dir}">
<cl asspath refi d="cl asspat h. base" />
</java>
</target>

<target name="run" depends="runCreat ePerson">
</target>
</ proj ect >

Running ant, compiled the code and ran the CreatePerson class. This added a Person
(John Smith) to the person table and his pet (rover) to the dog table.

Running ant runL oadPerson produced the following result:

[java]l] Hibernate: select personO_.id as idO_, personO_.first_nane as
first_nameO_, personO_.last_name as last_nane0_ from person person0_
where personO_.id=?

[java] ****x***x* John Smith

[javal] Hibernate: select petsO _.id as id_, petsO_.person_id as
person_id__, petsO_.id as idO_, petsO_.nanme as nanmeO_, petsO_.person_id
as person_idO_ from dog petsO_ where petsO_.person_id=?

[J ava] *kkkkXkXK*x% Royer

The output shows the SQL generated as well. Thisis due to the hi ber nat e. show_sql =
true in the hibernate.properties file. Setting this property to false will suppress these

MESSAgEs.

Moving the txn.commit() and session.close() statements to right after the session.load()
call resultsin the following error:

[java]l] Hibernate: select person0O _.id as idO_, personO _.first_nane as
first_name0O_, personO_.last_name as last_nane0_ from person person0_
where personO_.id

=72

[java] ****x***x* John Smith

[javal] Error: net.sf.hibernate.LazylnitializationException: Failed to
lazily initialize a collection - no session or session was closed

However, if we modify the lazy attribute in person.hbm.xml to false, we get the following

result:
[java]l] Hibernate: select person0O _.id as id0O_, personO_.first_nanme as

first_name0_, personO_.last _name as last_nane0_ from person person0O_
where personO_.id

=7?

[javal] Hibernate: select petsO _.id as id_, petsO_.person_id as
person_id_, petsO_.id as idO_, petsO_.nane as naneO_, petsO .person_id

as person_id0O_ from dog petsO_ where petsO_.person_id=?
[java] ********x* John Smith
[java] kkhkkkkhkkhkkkk*k Rover

Note the difference between this output and the earlier output with lazy = true and
txn.commit() and session.close() calls at the end. The lazy loading happens on the call to
getPets() on the Person object.

Now, we run ant runFindPerson. The output we get is shown below:

[java] Hibernate: select personO _.id as id, personO_.first_nane as
first_nanme, personO_.last_nane as |ast_nane from person personO_ where
(person0_.last_name='Smith')

[java] *********x* Ggra Smith

[java]l Hi bernate: select petsO _.id as id__, petsO_.person_id as
person_id , petsO_.id as idO_, petsO_.nane as nane0O_, petsO_.person_id
as person_id0_ from dog petsO_ where petsO_.person_id=?

[java] --------------- Spencer

[java] ********x* John Smith

[java] Hi bernate: select petsO _.id as id__, petsO_.person_id as
person_id , petsO_.id as idO_, petsO_.nane as nane0O_, petsO_.person_id

as person_id0_ from dog petsO_ where petsO_.person_id=?
[java] --------------- Rover

Concl usi on

While JDBC provides encapsulation of your Java code from the variations of database
management systems, it unfortunately does not isolate the code from SQL queries.
Hibernate provides transparent object persistence using runtime reflection. The code is
far more isolated from the persistence mapping as this is kept separate in a mapping file.
The application code is alot cleaner and simpler to develop. All this comes with higher
performance and small footprint as well.

Ref er ences

1. http://www.hibernate.org
2. http://www.sourceforge.net/projects/hibernate

