
Generics in Java – Part II
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
In Part-I we showed the benefits and usage of Generics in Java 5. In this part (Part-II), we
discuss how it is implemented in Java, and we delve into a number of issues with it. In
Part-III we will discuss the problems with mixing generic and non-generic code, and the
issues with converting a non-generic legacy code to generics.

Unchecked Warning
The Java compiler will warn you if it can’t verify type-safety. You would see this if you
mix generic and non-generic code (which is not a good idea). Developing applications,
while leaving these kinds of warnings unattended is a risk. It is better to treat warnings
as errors.

Consider the following example:

public class Test
{
 public static void foo1(Collection c)
 {
 }

 public static void foo2(Collection<Integer> c)
 {
 }

 public static void main(String[] args)
 {
 Collection<Integer> coll = new ArrayList<Integer>();
 foo1(coll);

 ArrayList lst = new ArrayList();
 foo2(lst);
 }
}

You have a method foo1 which accepts a traditional Collection as parameter. Method
foo2, on the other hand, accepts a generics version of the Collection. You are sending
an object of traditional ArrayList to method foo2. Since the ArrayList may contain
objects of different types, within the foo2 method, the compiler is not able to guarantee
that the Collection<Integer> will contain only instances of Integer. The compiler in
this case issues a warning as shown below:

 Warning: line (22) [unchecked] unchecked conversion
 found : java.util.ArrayList

 required:
java.util.Collection<java.lang.Integer>

While getting this warning is certainly better than not being alerted about the potential
problem, it would have been better if it had been an error instead of a warning. Use the
compilation flag –Xlint to make sure you do not overlook this warning.

There is another problem. In the main method, you are sending generics Collection of
Integer to the method foo1. Even though the compiler does not complain about this,
this is dangerous. What if within the foo1 method you add objects of types other than
Integer to the collection? This will break the type-safety.

You may be wondering how in the first place the compiler even allowed you to treat a
generic type as traditional type. Simply put, the reason is, there is no concept of
generics at the byte code level. I will delve into the details of this in the “Generics
Implementation” section.

Restrictions
There are a number of restrictions when it comes to using generics. You are not allowed
to create an array of generic collections. Any array of collection of wildcard is allowed,
but is dangerous from the type-safety point of view. You can’t create a generic of
primitive type. For example, ArrayList<int> is not allowed. You are not allowed to
create parameterized static fields within a generic class, or have static methods with
parameterized types as parameters. For instance, consider the following:

class MyClass<T>
{
 private Collection<T> myCol1; // OK
 private static Collection<T> myCol2; // ERROR
}

Within generic class, you can’t instantiate an object or an array of object of
parameterized type. For instance, if you have a generic class MyClass<T>, within a
method of that class you can’t write:

new T();

or

new T[10];

You may throw an exception of generic type, however, in the catch block, you have to
use a specific type instead of the generic.

You may inherit your class from another generic class; however, you can’t inherit from a
parametric type. For instance, while

class MyClass2<T> extends MyClass<T>
{
}

is OK,

class MyClass2<T> extends T
{
}

is not.

You are not allowed to inherit from two instantiations of the same generic type. For
example, while

class MyList implements MyCollection<Integer>
{
 //...
}

is OK,

class MyList implements MyCollection<Integer>, MyCollection<Double>
{
 //...
}

is not.

What is the reason for these restrictions? These restrictions largely arise from the way
generics are implemented. By understanding the mechanism used to implement generics
in Java, you can see where these restrictions come from and why they exist.

Generics Implementation
Generics is a Java language level feature. One of the design goals of generics was to keep
binary compatibility at the byte code level. By requiring no change to JVM, and
maintaining the same format of the class files (byte code), you can easily mix generics
code and non-generics code. However, this comes at a price. You may end up loosing
what generics are intended to provide in the first place – type-safety.

Does it matter that generics are at the language level and not really at the byte code level?
There are two reasons to be concerned. One, if this is only a language level feature, what
would happen if and when other languages are expected to run on the JVM? If the other
languages to run on JVM are dynamic languages (Groovy, Ruby, Python, …), then it may
not be a big deal. However, if you attempt to run a strongly typed language on JVM, this
may be an issue. Second, if this is simply a language level features (one heck of a macro
essentially), then it would be possible to pass in correct types at runtime, using reflection,
for instance.

Unfortunately, generics in Java does not provide adequate type-safety. It does not fully
serve what it was created for.

Erasure
So, if generics is a language level feature, what happens when you compile your generics
code? Your code is striped out of all parametric types and each reference to parametric
type is replaced with a class (typically Object or something more specific). This process
is given a fancy name – type erasure.

According to the documentation “The main advantage of this approach is that it provides
total interoperability between generic code and legacy code that uses non-parameterized
types (which are technically known as raw types). The main disadvantages are that
parameter type information is not available at run time, and that automatically generated
casts may fail when interoperating with ill-behaved legacy code. There is, however, a
way to achieve guaranteed run-time type safety for generic collections even when
interoperating with ill-behaved legacy code.”

While this provides interoperability with generic and non-generic code, it unfortunately
compromises type-safety. Let’s look at the effect of erasure on your code.

Consider the example code:

class MyList<T>
{
 public T ref;
}

By running javap –c, you can look at what’s in the byte code as shown below:

javap -c MyList
Compiled from "Test.java"
class com.agiledeveloper.MyList extends java.lang.Object{
public java.lang.Object ref;

com.agiledeveloper.MyList();
 Code:
 0: aload_0
 1: invokespecial #1; //Method java/lang/Object."<init>":()V
 4: return

The type T of the ref member of the class has been erased to (replaced by) type Object.

Not all types are always erased to or replaced by Object. Take a look at this example:

class MyList<T extends Vehicle>
{
 public T ref;
}

In this case, the type T is replace by Vehicle as shown below:

javap -c MyList
Compiled from "Test.java"

class com.agiledeveloper.MyList extends java.lang.Object{
public com.agiledeveloper.Vehicle ref;

com.agiledeveloper.MyList();
 Code:
 0: aload_0
 1: invokespecial #1; //Method java/lang/Object."<init>":()V
 4: return

Now consider the example:

class MyList<T extends Comparable>
{
 public T ref;
}

Here the type T is replace by Comparable interface.

Finally, if you use the multi-bound constraint, as in:

class MyList<T extends Vehicle & Comparable>
{
 public T ref;
}

then the type T is replaced by Vehicle. The first type in the multi-bound constraint is
used as the type in erasure.

Effect of Erasure
Let’s look at the effect of erasure on a code that uses a generic type. Consider the
example:

ArrayList<Integer> lst = new ArrayList<Integer>();
lst.add(new Integer(1));
Integer val = lst.get(0);

This is translated into:

ArrayList lst = new ArrayList();
lst.add(new Integer(1));
Integer val = (Integer) lst.get(0);

When you assign lst.get(0) to val, type casting is performed in the translated code. If
you were to write the code without using generics, you would have done the same.
Generics in Java, in this regards, simply acts as a syntax sugar.

Where are we?
We have discussed how Generics are treated in Java. We looked at the extent to which
type-safety is provided. We will discuss some more issues related to generics in the next
Part (Part III).

Conclusion
Generics in Java were created to provide type-safety. They are implemented only at the
language level. The concept is not carried down to the byte code level. It was designed to
provide compatibility with legacy code. As a result, generics lack what they were
intended for – type-safety.

References

1. Generics in Java, Part-I at http://www.agiledeveloper.com/download.aspx (look at
references in Part-I)

