
http://www.agiledeveloper.com 1 of 10

.NET Gotchas
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Modified 08/28/2005: When I wrote this short article, I did not realize that I would
publish a book with the same title some day! I got inspiration to write a book on
this topic seven months later. The book .NET Gotchas, published by O’Reilly in
May 2005, has 75 gotchas and is about 400 pages long☺

Modified 08/28/2005: Brian Grunkemeyer of the Microsoft BCL team pointed out
error in this document for the Dispose pattern. Please note the change on page
5.

(I have not changed anything in this document. Where a change is needed, I
have placed a comment on the side.)

Abstract
Those of us programming on the .NET framework using one of the .NET languages and Visual
Studio have come to realize the power and increased productivity that comes with it. Like any
development, however, there are things that one should pay attention to. This article presents a
number of things that we, as developers, would benefit from keeping in mind. This article
presents 40 items we need to be aware of in the area of CLR/Framework, Visual Studio,
Compiler, Language, Garbage Collection, Inheritance, Multithreading, COM-Interop, ASP.NET
and Web Services.

CLR/Framework Gotchas

1. Watch out for language specific aliases
Common Type System (CTS) defines the types that all .NET languages use. Examples of
these are System.Int32, System.Single, etc. However, each .NET language defines aliases
to these types. For instance, int in C# and Integer in VB.NET are aliases to the
System.Int32. These aliases correspond to the types C++ developers (in the case of C#)
and VB developers (in the case of VB.NET) are familiar with. However, one should keep
in mind that the size of the data types is not consistent with what one might be familiar
with. For instance, Integer in VB is not the same size as Integer in VB.NET and long in
C++ is not the same size as long in C#.

2. Watch out Value-Type vs. Reference-Type when assigning

The effect of code r1 = r2; depends on whether r1 and r2 refer to value types or reference
types. If they are value types, the value of the object r2 is copied to the object r1.
However, if they are references, r1 refers to the same instance that r2 refers to. This may
lead to confusion as one might not know which type it is by looking at the above
assignment.

3. Avoid using + to append Strings
If your intent is to append strings, you may improve performance by using a
StringBuilder instead of String1.

4. Watch out for delegate being null

If you are implementing a component that generates events, use caution when firing an
event using a delegate. If no delegates have been registered an exception is thrown when

you generate an event. Check to make sure the delegate is not null (Nothing in VB.NET)
before firing the event.

Visual Studio Gotchas
5. Treat Warnings as Errors

When you compile your code in VS.NET, if there are no errors, you will notice a
message similar to “Build: 1 succeeded, 0 failed, 0 skipped” appear in the Output Build
window. However, if there were warnings, these get hidden in the Output Build window.
Some of these warnings are severe and should have been actually treated as errors. For
instance assume a method is virtual in the base class. If one writes a method with the
same name in the derived class, but forgets to mark it with the keyword override
(overrides in VB.NET), then a warning is generated as “warning CS0114:
'MyApp.Derived.fn()' hides inherited member 'MyApp.Base.fn()'. To make the current
member override that implementation, add the override keyword. Otherwise add the new
keyword.” Unfortunately, the compiler treats the function fn of Derived as new instead of
treating it as override. A developer keen on writing robust and dependable code would
not want to treat warnings lightly. It is highly recommended that you set “Treat Warnings
as Error” on your project by right clicking on the project within solutions explorer and
modifying the setting as shown below:

Compiler Gotchas

6. May want to set references to Nothing after last use
The C# compiler sets a reference to null after the last usage. However, the
VB.NET compiler does not appear to do so. While this may not be an issue most
of the time, it may be of concern if a method creates an object and goes into an
extended computation cycle after that. Assume we have a code where an object is

http://www.agiledeveloper.com 2 of 10

http://www.agiledeveloper.com 3 of 10

created, used and then the code goes into a computation cycle that may take
significant amount of time. Assume that the reference is not used any more after
its initial use. If the garbage collector were to run while the function is in the
middle of the computation, in C#, the object may be garbage collected since the
compiler has implicitly set the reference to null. However, we have noticed that
this does not happen in VB.NET code. One may want to set the reference to
Nothing after the last use in order to facilitate speedy cleanup in cases where this
may be significant.

Language Gotchas

7. Use aliases sparingly
You may define your own aliases for types as in the following C# syntax:
using Number = System.Int32;
While this may be convenient at times, excessive use of this would make it hard for
others to read and understand the code.

8. Do not create properties with same name that differ only in case in C#

Of course this should generally be considered a bad practice, period. One reason
especially this should be avoided is that VB.NET is not case sensitive. If you were to
write two properties in a C# class, say myproperty and MyProperty, then when
referenced from VB.NET, only the first property is visible. It hides any other property
with the same name in its scope.

9. Do not write a public copy constructor and do not rely on the MemberWiseClone

If you have a need to copy your objects, write a protected copy constructor and invoke it
from your own implementation of clone2.

10. Do not invoke static (shared) members using an object reference

In C# a static member may only be accessed on the class. It does not allow one to access
these using an object reference. However, in VB.NET, this restriction is not in place.
Given that static/shared members are not polymorphic, it is easy for one to be confused if
static/shared methods are invoked using an object reference, especially if the static/shared
methods are part of the derived class as well. In VB.NET, it is better that you do not use
an object reference to access shared methods/members. Instead, use the class to access
these.

11. Avoid Operator Overloading

C# allows you to overload operators. However, language like VB.NET does not support
operator overloading. For your code to be CLI compliant, you are required to provide a
regular method for each overloaded operator. An example of this is the += operator on
Delegates and the related Combine method. Overloading operator is supposed to make
the code more intuitive and easier to understand. On the contrary, there are several issues
related to overloading. For instance, overloading true requires overloading false in C#.
Also, the && operator is implemented through a combination of overloaded true, false
and &. Arbitrarily overloading operators largely increases complexity to the extent than
its worth is questionable.

Garbage Collection Gotchas

12. Do not rely on Finalize being invoked, instead Dispose objects yourself

http://www.agiledeveloper.com 4 of 10

One can not predict when exactly Finalize will be called on an object. Any resources not
release will be held until Finalize is called and this may lead to some undesirable effects.
It is better for one to invoke the Dispose method on an object (assuming IDisposable is
implemented) instead of relying on the Finalize. In C#, utilize the using clause to ensure
objects are disposed properly.

13. Invoke the base’s Finalize from within your Finalize method in VB.NET

In VB.NET, from within your Finalize method invoke the base class’ Finalize method. If
you are using C#, however, you do not invoke the base class’ Finalize method.

http://www.agiledeveloper.com 5 of 10

14. Implement Dispose on an object and suppress finalize in it

Call to Finalize involves overhead. If resources are cleaned up properly, there is no
reason for Finalize to be executed on an object. In your Dispose method, invoke
GC.SuppressFinalize() method to tell the CLR not to bother finalizing the object.

15. Within Finalize method, do not access any managed resources

Let’s say an object A has a reference to an object B and there is a reference on the stack
to the object A. Now, both objects are considered to be reachable. If the reference on the
stack goes out of scope or it is set to null (Nothing in VB.NET), then the two objects are
considered to be unreachable. When unreachable objects are garbage collected there is no
guarantee on the order in which they will be Finalized. Accessing other managed
resources/objects within Finalize may lead to unpredictable results.

16. Follow the Design Pattern for Dispose

If a user of an object calls the Dispose method both managed resources and unmanaged
resources needs to be Disposed. However, if a user forgets to call Dispose, when the
Finalize is eventually invoked on the object, only unmanaged resources must be released
(see item #15). Understanding the Dispose Pattern3 helps us with proper implementation
of the Dispose method.

Modified 08/28/2005: Brian Grunkemeyer of the Microsoft BCL team
wrote a couple of days ago: "In this document:
http://www.agiledeveloper.com/articles/DotNetGotchas.pdf You have an
improper example of the Dispose pattern. Dispose(bool) should be
protected, not public. Dispose(void) should call
GC.SuppressFinalize(this) after calling Dispose(bool). You can check on
the web for updated design guidelines – Joe Duffy, myself, and a few
others cleaned these up about 6 months ago."

Thanks Brian. Folks, please refer to
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/cpconFinalizeDispose.asp for the correct example.
[This error is only in this online example and not the .NET Gotchas
book☺]

Dispose for the Base class:

 public class Base : IDisposable
 {
 //...
 public virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 // cleanup/ dispose managed resources here.
 }

 //cleanup unmanaged resources here
 }

 public void Dispose()
 {
 Dispose(true);
 }

Comment [VS1]: See note above.

Comment [VS2]: See note above.

http://www.agiledeveloper.com/articles/DotNetGotchas.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconFinalizeDispose.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconFinalizeDispose.asp

http://www.agiledeveloper.com 6 of 10

 ~Base() // Replace with Finalize method in VB.NET
 {
 Dispose(false);
 // In VB.NET, invoke MyBase.Finalize();
 }
 }

Dispose for the Derived class:

 public class Derived : Base
 {
 public override void Dispose(bool disposing)
 {
 if (disposing)
 {
 // cleanup/ dispose managed resources here.
 }

 //cleanup unmanaged resources here

 base.Dispose (disposing);
 }
 }

Inheritance Gotchas

17. Use the “is” operator sparingly
The “is” operator (TypeOf in VB.NET) allows us to query if a reference is
referring to an object derives from or implements a certain type. While this may
seem very convenient, in general, this may lead to code that is not extensible. We
may end up violating Open-Closed Principle4 (OCP). Use it sparingly and only in
cases where you will not be violating OCP.

18. Do not override a method or declare it new if base method is not virtual

If a method declared in the base class is not virtual, then the method is not
overridable. Declaring a derived class method with the same name (and marking
it as new) will result in hiding. See item #19 and #20.

19. Do not hide methods when subclassing

C# allows you to hide a method when subclassing. Assume that a method is
declared virtual in the base class. If a method is overridden (with the override
keyword) in the derived class, then on an object of derived class, the derived class
method is invoked if the type of the reference is derived type as well as base type.
However, if in the derived class you write the method but declare it as new, the
method ends up hiding the base class method. Invoking the method using a
derived class reference results in a call to the derived class method; however,
invoking the method using a base class reference results in invocation of the base
class method. The resulting behavior of the code may be undesirable.

20. Remember to mark method as override

http://www.agiledeveloper.com 7 of 10

If a method is declared in the base class as virtual and you implement a method
with the same name and signature in the derived class, remember to mark the
derived class method as override. If you forget to mark it as override, the compiler
gives a warning and treats the method as new. Refer to item #19.

21. Do not mark a derived class method as virtual if the base class method is virtual

Programmers coming from C++ are used to mark methods as virtual in the
derived class when overriding virtual methods from the base class. However, in
.NET, if the method is marked as virtual in the derived class the compiler treats it
as a new method instead of overriding it. This results in the hiding of the base
method instead of overriding. Mark the derived class method as override.

Multithreading Gotchas

22. Do not use certain methods of Thread class
Certain methods of Thread class are non-deterministic. By the time you process
the response from these methods, the thread’s state may have changed. For
instance calling ThreadState or IsAlive may indicate that a thread is alive,
however, by the time you process the response the thread may have quit.

23. Do not call Start on a Thread more than once

Calling Start on a Thread that has been started, terminated or aborted results in a
ThreadStateException being thrown. If you need to start executing a method again
in a new thread, then create a new Thread object and call start on it.

24. Make the thread a background thread
Your application keeps running while there is at least one non-background thread
running. By default, threads in .NET are created as non-background threads. This
may not be desirable. When creating a thread and before starting it, ask yourself if
this should be a background thread? If so, set the IsBackground property to true
before you invoke the start method.

25. Do not use Suspend and Resume on Thread
You have no idea what the state of the thread is and which method it is executing
when you call Suspend on a thread. What if the thread is holding some locks
while you call Suspend? Using these methods is the easiest way to create
deadlocks in your application.

26. Use caution when calling Interrupt on a thread

When you call interrupt on a thread, if the thread is blocked in a Sleep, Join or
Wait, a ThreadInterruptedException exception is thrown. However, if the thread
is not currently blocked, the exception is not thrown on the thread and it is not
interrupted until it gets block in a Sleep, Join or Wait. Calling Interrupt may not
result in the thread being interrupted for a long time or never.

27. Know that ThreadAbortException is a special exception

http://www.agiledeveloper.com 8 of 10

When a Thread is Aborted, ThreadAbortException is thrown on the thread. While
the thread may have a catch block to handle ThreadAbortException (and can take
care of proper cleanup and termination in this block), the ThreadAbortException
is automatically raised again at the end of the catch block. Any code in the
method that follows the try – catch – finally will not be executed.

28. Call Join after calling Abort if you need to wait for the thread to cleanup
When Abort is called on a Thread, ThreadAbortException is thrown (See
item#27). All finally blocks are executed on the thread before the execution of the
Thread terminates and this may take some time. The thread that calls the Abort
may want to call Join right after calling Abort so it could wait for the Thread to
terminate (See item#29 as well).

29. One expects a Thread to terminate when Abort is called, do not ResetAbort
As discussed in item #27, a ThreadAbortException is automatically raised again
at the end of the Catch to ensure termination of the Thread. However, in the catch
block one may invoke ResetAbort to cancel the abort request and continue
executing. In this case the thread will not terminate upon the Abort request. The
calling code may not be aware of this and may result in undesirable behavior in
the application. Consider redesigning if you think your application needs this
feature.

30. Use caution in Synchronizing on the Type object
Say you need to modify a static member of a class A, from within an instance
method, in a thread safe manner. One possibility is to lock on the type object as:

lock(GetType())
This however may fail if we have two threads modifying the static members,
where the first thread is invoking a method on the instance of the class and the
second thread is invoking a method on an instance of its derived class. GetType
will return two different Type objects; the Type of the class in first thread and the
Type of the derived class in the second thread. The correct way to synchronize on
the type object is:

lock(typeof(A));

COM-Interop Gotchas
31. ReleaseComObject to freeup unmanaged COM resources

Remember to call System.Runtime.InteropServices.Marshal.ReleaseComObject
when you are done using a COM object from within a .NET application. If you do
not call the ReleaseComObject, the COM object is not disposed until the Runtime
Callable Wrapper is Finalized. You may end up holding critical resources for an
extended period of time and this may affect the overall performance of the
system.

32. Caution using an interface after release

Say you have obtained multiple interfaces on a COM object. If you invoke
ReleaseComObject using one of the interfaces, the Runtime Callable Wrapper is

http://www.agiledeveloper.com 9 of 10

disposed. Invoking methods now using any related interfaces will result in an
object reference not set to an instance (NullReference) exception.

33. Overhead associated with Apartments

If your COM object is in a STA (Single Threaded Apartment) and your .NET
client is running in an STA as well. If a method is invoked on the COM
component, only the COM interop overhead is incurred. However, if the .NET
client were in an MTA, then in addition to the interop overhead, COM
marshalling overhead is incurred as well since the request goes through a proxy
and stub. It is important to find the apartment of the COM component and place
the client in the same apartment, if possible, to eliminate the overhead.

34. Know the default Apartment of your thread
What apartment does your .NET thread run on by default? The answer is: it
depends! C# client runs in the MTA by default while VB.NET client runs in a
STA by default.

35. Do not rely on autogeneration of GUID
Set the GUIDAttribute on your class if you intend to make it available for COM
interop. This provides greater control later on to vary the GUID if necessary.

36. Set the ClassInterface Attribute to ClassInterfaceType.None
If you desire to interact with .NET from COM components/clients, do not let your
.NET class expose any interfaces. Set the ClassInterfaceAttribute to
ClassInterfaceType.None. Write a separate interface and expose its methods as
interface for COM interop.

ASP.NET Gotchas
37. Use caution with SmartNavigation

The SmartNavigation feature on an ASP.NET page has some neat features.
However, when turned on, a request for the referrer (the referring page from
which we arrived at this page) returns a null.

38. Test for browser incompatibilities
While ASP.NET is pretty capable of generating proper output for different
browsers, the scripts we write may not be. Test the application (all pages) in
different browsers to ensure compatibility.

Web Services
39. Set the Credential property of Proxy when invoking web service

On a Web Service client proxy set the Credentials property. This is more of an
issue in development and testing. If web service is implemented on W2K, the
default setting allows anonymous access. However on XP and Win2003, the
Windows Integrated authentication is the default. Set the credentials to either
DefaultCredential or to a NetworkCredential.

http://www.agiledeveloper.com 10 of 10

40. Multiple Asynchronous calls using a single proxy may result in contention

The client proxy in .NET Web Services provides BeginInvoke and EndInvoke
methods to emulate asynchronous calls. If you have a need to call multiple
methods simultaneously on a web service, you may simply make these multiple
asynchronous method calls using a single proxy. You will notice that
simultaneous requests are being sent from the client and the response is indeed
received simultaneously on the first set of calls. However, if the client proxy has
the CookieContainer property set on it, the subsequent responses are received
serially. The reason for this is that the same cookie is being transmitted on these
multiple requests and the web server is serializing these calls based on the session.
If you will use session state, use different proxies to send your simultaneous
requests.

Conclusion
This article presents things that one should keep in mind while developing code on the
.NET framework. .NET Framework provides a number of capabilities that makes a
developer productive. However for its share, it has introduced a certain amount of
complexity and issues as well. Knowing these Gotchas would allow us to fully benefit
from the framework and language capabilities.

References

1. Strings in Java and .NET, http://www.agiledeveloper.com/download.aspx.
2. Why copying an object is terrible thing to do?,

http://www.agiledeveloper.com/download.aspx.
3. http://msdn.microsoft.com.
4. Robert C Martin, The Open-Closed Principle. C++ Report, 1996.

http://www.objectmentor.com/resources/articles/ocp.pdf.

