Custom Design Time Ul in .NET

Venkat Subramaniam
venkats@agiledeveloper.com
http://www.agiledeveloper.conm/download.aspx

Abst r act
Visual Studio alows us to change various properties of controls at design time. Well
defined attributes and classes in the System.ComponentModel namespace and
System.Drawing.Design namespace allow us to control how Visual Studio works with
controls and properties. Using a simple example we will illustrate these capabilities in
this article.

Vi sual Studio and Properties of Controls

Visual Studio allows us to set various properties of controls at design time. This applies
to predefined controls as well as user controls. The motivation to discuss about custom
design time Ul Type Editor comes from a question that was asked by a subscriber to
Aqility el etter.

How does one control how Visual Studio interacts with properties of a control at design
time? We will study this by using simple examples. Let's start by creating a Blank
Solution named Example in Visual Studio 2003. Under this solution we will first create a
C# Windows Control Library project named MyUserControlLib as shown below:

Solution Explorer

Mew Project...
Existing Project...
Existing Project Erom Web... Save Example.sin
i Add Mew Teem. ., Gl save Al
i3 Add Existing Item. .. ‘E_fj &dd Solution bo Source Contral,..
2
Fenarme
2 Properties

Add New Project

1|

mE

Broject Types: Templates:
-~ Visual Basic Projects 2 . . -
{3 Visual C# Projects i
{0 Visual J# Projects Windows Class Library ‘Windows
-] visual C++ Projects toplication ControlLibrary

-] Setup and Deployment Projects
B Other Projects

Bl D D

amart Device ASP.MET Web ASP.MET Web
Application Application Service

| & project for creating controls to use in Windows applications

ame: | MyLiserContralLibl

Location: | C i\termpExarnple

Project will be created at C:\temp\Example}MyUserControlLib,

Ok

| first delete the default wizard created user control named UserControll.cs. Then, |

create auser control named VenkatsControl as shown below:

Solukion Explorer - MyUserContr, ., # X E
15| o
@ Solution 'Example’ {1 project) g"-
Febuild
“1] Add Mew Ttem,.. | Add 3
&dd Exisking Item... Add Reference. ..
] Mew Folder Add Web Reference...
E add Windows Form, .. Set as Startlp Project
“F add Inherited Form, .. Debug [
ﬁﬂ add User Contral... | E Save MyldserControllib
#dd Inherited Contral... %9 Add Solution to Source Control,..
@ Add Component. .. B Paste
*g &dd Class. .. » Remave
Rename
= Properties

WSE Setbings 2.0...,

Add New Item - MyUserControlLib . X |
Cateqaries: Termplates: |12 &
-3 Local Project Items p— : . -

1)
Windows Farm Class Zomponent
Class
5 T -_
&
Wser Contral Data Form Daka Set
Wizard
: 2
el
%ML File XML Schema Code File
b
|n class For creating a Windows Form contral using the visual designer
Mame: | venkatsControl
Cpen corcel | Heb |

In solution explorer, double click on VenkatsControl.cs. This should bring up the control
in design view. Click on View | Toolbox and select Label control from the Windows
Forms list. Drag and drop Label onto the control. The resulting placement of the label is
shown below:

¥ MyUserControlLib

Microsoft Yisual C# MET [design] - YenkatsControl.cs [Design]*

File Edt View Project Buld OCebug Data Fomat Tools Window Help

gleeaTo ToiBlenes| e @E %%,
venkatsControl.cs [Design]* |

7

Now, right click on the control in design view and click on View Code. Edit the code to
add afield and a property as shown below:

public class VenkatsControl : System W ndows. Forns. User Cont r ol
{

private System W ndows. For ns. Label | abel 1;

private string theMessage;

public string Message

{
get
{
return theMessage;
}
set
t heMessage = val ue;
}
}

Now double click on the control in design view and you will notice that the Load event
handler is added. Edit the event handler as shown below:

private void VenkatsControl Load(object sender, System EventArgs e)

{
}

| abel 1. Text = t heMessage;

Now again under the Example solution, create another C# Windows Application project
named UserControl TestApp as shown below:

i ew project ———

Broject Types: Ternplabes:
o4 Wisual Basic Projects = : -
S o @]
{;-I Wisual J# ije'?ts Windows Class Library Windows
B visual C++ Projects application Control Library

{1 Setup and Deployment Projects
-] Other Projects @ @
Srnart Device ASP.MET Wweb ASP.MET wWweb
Application Application Service ll

|.n. project For creating an application with & Windows user interface

Marme: I UserControlTestApp

Location: I Citernp\Example ;I Browse. .. |

Project wil be created at C:\temp\ExamplejUserControlTestapp,

oK | cancel | s |

Forml.cs is created for you by default. With the Form in the design view, view the “My

User Controls’ list in the Textbox. The VenkatsControl should appear in this list as
shown below:

30 UserControlTestApp - Microsoft

File Edit Wiew Project Build
T e & ST e | S

o

Toolbosx

My User Controls |ﬂ

| M Poirter
@ VenkatsConkral

X000)§

Drag and drop the VenkatsControl on the Form as shown below:

3¢ UserControlTestApp - Microsoft Yisual C# .NET [design] -
file Edt iew Project Buld Debug Data Farmat

B & & | M oy |44 B oot

T Lol |

_Furmt.ci [Design] |

| =Og|oa] * -

Right click on the control and click on Properties. The Message property appears in the
Properties list as shown below:

Laocation a0, 48
Locked False
Message
Modifiers Privake
RightToLeft Mo

Size 150, 150
TabInde:x 1]

Now type in a value of “test” for the Message property and notice that the value appears
in boldface.

Properties and Design Tine Default Val ues

The value of the Message property appears in boldface because the value of “test” is
different from the default value. What is the default value though? In this case, since we
did not assign it any thing, it is empty. Let us go ahead and provide it a default value.
Modify the code for VenkatsControl as shown below:

[Def aul t Val ue("test")]
public string Message

{
get
{
return theMessage;
}
set
t heMessage = val ue;
}
}

Now, in the Form, right click on the VenkatsControl1l's property and look for the
Message property. Its value “test” is not in boldface. Now modify the value of the
Message property to test1l and note that it appears in boldface. Changing it back to “test”
removes the boldface again as shown below:

Fanik: Microsoft Sans Ser Fanik: Microsoft Sans Ser
ForeCaolor Bl controlText ForeCaolor Bl controlText
ImeMode MoConkral ImeMode MoConkrol

Locatian 80, 48 Locatian 80, 48
Locked Falze Locked Falze

testl]| test
Modifiers Private Modifiers Private

Visual Studio queries the attributes of the property, looking for the
DefaultValueAttribute. If the value given for the property at design time is different from
the default value, then it displays the value in boldface. DefaultValueAttribute class is
part of the System.ComponentModel namespace.

Enunerati on Properties and Vi sual Studio

In the above example, the type of Message property was a string. The type of the property
may be of different types. If the type of the property is an enumeration, however, Visual
Studio displays a combo box instead of a simple textbox. Further, the values in the
combo box are the different values of the enumeration. This isillustrated in the following
example. Let’s continue with the above code. We will create three enumerations UOM,
EnglishLengthUnits and MetricL engthUnits as shown below:

public enum UOM

{

}

Engl i sh,
Metric

public enum EnglishLengthUnits

{

}

i nches,
f eet,
mles

public enum MetricLengthUnits

{

}

mm
cm
m

km

Now, we will add two properties and two fields to VenkatsControl class as shown below:

private UOM t heUOM
private EnglishLengthUnits theUnit;

[Def aul t Val ue(UOM Engl i sh)]
public UOM UOMIoUSE

{
get { return theUoOM }
set { theUOM = val ue; }
}
public EnglishLengthUnits UnitToUse
{
get { return theUnit; }
set { theUnit = value; }
}

Now, in the Form, view the VenkatsControl1’s property. Y ou should see the following:

UnitTalse inches
UOMTalISE Enaglish
Wisible True

If you click on the UOMToUse property’s value, a Combobox appears at that location.
Clicking on the dropdown displays the following:

UnitTalse inches
UOMTalISE Enalish
YWisible

UOMToUSE e

Simlarly, selecting the UnitToUse displays:

LnitTallse
LiMTalsE
Wisible

UnitTollse

Now, let’s modify the UOMToUse from English to Metric.

UnitTallse inches
LOMTalISE Metkric j
Yisible True I

Now, let’s click on the UnitToUse and see what appears in the combo box. We see:

nitTallse inches
UCMTallsE
Wisible

UnitTollse

Of course, it shouldn’t be a surprise that we ill see the Metric Units and not English
units. This is not desirable, however. When the UOMToUse is English, we want
UnitToUse to be inches, feet, etc. When the UOMTOUse is changed to Metric, we would
like to see the options of mm, cm, m, etc. for the UnitToUse. How do we do that?

Val ue Type Dependency?

While we want the values for the UnitToUse to correspond to the value chosen for
UOMToUse, this does not happen automatically. The first problem is the type of
UnitTouse is hardwired to EnglishLengthUnits. This has to change. If the value of
UOMToUse is English, the type of UnitToUse should be EnglishLengthUnits. However,
if the value of UOMToUse is Metric, we want the type of UnitToUse to be
MetricLengthUnits. How can we change the type of a property based on the value of
another property? (Next time you see me, if | have lesser hair on my head, you know the
reason®©)

U Type Editor to Rescue

Fortunately, Visual Studio goes beyond what is discussed above in terms of its flexibility.
It allows one to wire adifferent editor for each property, if so desired. When you click on
a property’s value in the Property list, Visual Studio checks with the metadata for the
property to see if the author (of the property) has asked a specific editor to be used. If so,
it uses that editor. If not, it uses a default editor depending on the type of the property.

The editor to edit the property derives from the UlTypeEditor class of the
System.Drawing.Design namespace. This class acts as a base class for custom type
editors for the design time environment. In order to write your own custom editor for
editing the properties at design time, you may write a class that derives from this
Ul TypeEditor class. You may then override the GetEditStyle method to return the type of
the editor you are implementing. The possible values are DropDown, Modal and None
from the UlTypeEditorEditStyle enumeration. The value of DropDown tells that a
dropdown arrow button must be placed in the property’ s value field/area and the Ul will
be adropdown dialog. The value of Modal indicates that an ellipsis button (...) should be
placed instead. Finally, the value of None indicates that no Ul is provided. In addition to
overriding the GetEditStyle method, one may also override the EditValue method. This
method handles the user input processing and value assignment. Further one may
override other methods if more Ul presentation is desired.

| mpl enmenting U Type Editor

Let’s get back to our exanple and see how we can inplenment the
U TypeEditor so we can achieve the desired behavior for UnitToUse
property based on the UOMIoUse property’s val ue.

W first create a class named Uni t ToUseTypeEdi t or in the
MyUser Control Li b project as shown bel ow

usi ng System

usi ng System W ndows. Forns; // For ListBox

usi ng System Drawi ng. Design; // For U TypeEditorEditStyle

usi ng System W ndows. Forns. Design; // For | W ndowsFornsEditorService
usi ng System Conponent Model ; // For | TypeDescri pt or Cont ext

nanespace MyUser Control Lib

{
public class UnitToUseTypeEditor :

Syst em Dr awi ng. Desi gn. Ul TypeEdi t or
{
private | WndowsFornsEditorService editorService;

public override U TypeEditorEditStyle CGetEditStyl e(
| TypeDescri pt or Cont ext cont ext)
{

}

private void |tenBel ected(object sender, EventArgs e)

return U TypeEditorEditStyl e. Dr opDown;

if (editorService !'= null)

{

edi t or Servi ce. d oseDr opDown() ;

}

public static Type Cet TypeOf Enuner ati onToUse(UOM UOWal ue)

{
Type typeO EnunifoUse = nul | ;

swi t ch(UOWal ue)

{
case UOM Engli sh:
typeOf EnunfToUse =
t ypeof (Engl i shLengt hUni ts);
br eak;
case UOM Metri c:
typeOf EnunfToUse =
typeof (MetricLengt hUnits);
br eak;
}

return typeCOf EnuniToUse;
}

public override object EditVal ue(
| TypeDescri pt or Cont ext cont ext,
| Servi ceProvi der provider, object value)

editorService =
provi der . Get Servi ce(
t ypeof (1 WndowsFor nsEdi t or Servi ce)) as
| W ndowsFor nsEdi t or Ser vi ce;

if(editorService == null)
return val ue;

Venkat sControl theControl =
context.lnstance as Venkat sControl;

Type typeO EnuniToUse =
Cet TypeOF Enuner ati onToUse(
t heCont r ol . UOMIoUSE) ;

Li st Box alLi st Box = new Li st Box();
foreach(string anltemin
Enum Get Nanes(typeO EnunifoUse))

{
aLi st Box. I tens. Add(anl tem;
}
try
{
aLi st Box. Sel ectedltem =
Enum Par se(t ypeOf EnuniToUse,
val ue. ToString()).ToString();;
}
catch

{/1 lgnore if value does not match Enuneration

}

aLi st Box. Sel ect edl ndexChanged +=
new Event Handl er (1t entel ect ed) ;

edi t or Servi ce. DropDownCont r ol (aLi st Box) ;
return Enum Parse(
typeO EnunifoUse,
aLi st Box. Sel ectedltem ToString());

}
}
}
Let’s understand what the above code does.
The | WndowsFor nsEdi t or Servi ce is an interface in t he
System W ndows. For ns. Desi gn nanespace. This interface allows the

U TypeEditor to display a U to edit the property in design node. This
will be used fromwithin the EditValue nethod of the U TypeEditor (as
seen later). The EditValue method is provided a reference to this
interface which is saved in the weditorService field wthin our
U TypeEdi t or.

The GCetEditStyle nethod sinply indicates that the U is a dropdown
styl e.

The Itentelected nethod is an event handler that is assigned to the
ListBox in the EditValue method. Wen an item is selected from the
listbox, this handler instructs the |WndowsFornEditorService to close
the editor.

The Cet TypeO EnunifoUse is a hel per nmethod. Based on the value of the
UOMIoUse property, it determnes which Enumeration, EnglishLengthUnits
or MetriclLengthUnits to use.

Finally, the inportant and interesting nethod EditValue is inplenented.
In this method we first cache or save away a reference to the
| WndowsFor nsEdi tor Service. W then obtain a reference to the control
being edited in the design node (in this ~case it is the
Venkat sControl). W deternmine the type of the Enunmeration to use based
on the UOMIoUse property of VenkatsControl’s. Then we create a ListBox
and populate it wth the values of the appropriate enuneration
(EnglishLengthUnits or MetricLengthUnits). W then set the selected
value of the listbox to the current value of the UnitToUse property
(given to us though the value variable). W tie the Itenfelected
handler to the SelectedlndexChanged event of the ListBox. Finally we
ask the [|IWndowsFornsEditorService to popup the listbox. Once the
listbox item is selected, the selected value is obtained from the
i stbox and returned.

There is still some tweaking that is needed on the VenkatsControl. W
will see that next.

Connecting the Control’s Property to the U Type Editor

First, we can’t let the UnitToUse to be of type EnglishLengthUnit. Further, we need to
indicate to Visual Studio that the editor to be used to modify the values of this property is
our UnitToUseTypeEditor. How do we do that? That is the easy part as shown below:

private UOM t heUOM
private EnumtheUnit = EnglishLengthUnits.inches;

[Def aul t Val ue(UOM Engl i sh),
Ref reshProperti es(RefreshProperties. All)]
public UOM UOMIoUSE
{
get { return theUoOM }
set { theUOM = val ue; }

}

[Editor(typeof (UnitToUseTypeEditor),
t ypeof (Syst em Dr awi ng. Desi gn. Ul TypeEditor)),
Def aul t Val ue(Engl i shLengt hUni ts. i nches)]
public Enum Unit ToUse

{
get
{
Type typeO EnuniToUse =
Uni t ToUseTypeEdi t or. Get TypeO Enuner at i onToUse(
t heUOV) ;
try
{
i f (Enum | sDefined(typeOf EnuniToUse,
theUnit))
{
return (Enun) Enum Parse(
typeO EnunifoUse,
Enum Get Nane(
t ypeO EnunifoUse, theUnit));
}
}
cat ch
{/1 Sinply return the first value in this case.
return (Enun) Enum GCet Val ues(
typeO EnunifoUse) . Get Val ue(0);
}
set
{
theUnit = val ue;
}
}

The RefreshProperty attribute on UOMToUse tells Studio that whenever the value of
UOMToUse is changed, it needs to redisplay the values of other properties for this
control in the design environment.

The Editor attribute on the UnitToUse tells Studio which Ul TypeEditor to use to edit this
property. Note that the type of the UnitToUse property is Enum (not an int or
EnglishLengthUnits). The getter for this property checks the type of the UOMToUse and
returns the appropriate enumeration type of the field theUnit.

Since significant change was made to the control, it is better to remove the
VenkatsControl1 from the Form1 and place a new instance of the control on the Form.

The following shows the value of the UOMToUse being modified (note that UnitToUse
accordingly changes automatically):

UnikTollse inches UnitTollse mm
UOMTolSE English LOMTolUSE ;l

The following shows the effect of UnitToUse being changed to km and then the
UOMTOUse being modified to English:

UnitTollse j it Talse inches
UOMTolSE Metric LOMTalISE English |

In the above example, not that EnglishLengthUnits has only three values while
MetricLenghUnits has four values (km being the last). When we changed UOMToUse
from Metric to English, our code set the UnitToUse to the first value (inches).

Ref actori ng the code

There are a couple of things that may be improved. One, a factory may be used in the
GetTypeOfEnumerationToUse method to determine the type of Enumeration. Also, the
GetTypeOfEnumerationToUse may be moved (to a utility class) to eliminate cyclic
dependency between VenkatsControl and UnitToUseTypeEditor. Further, since the
UnitToUseTypeEditor is so dependent on VenkatsControl, it may be written as a nested
class of VenkatsControl class.

Concl usi on

Visual Studio provides a very powerful capability to interact with controls at design time.
By effectively using the metadata and set of classes and interfaces, one can fine tune the
design time behavior of controls and properties. This article has shown, using simple
examples, how one may benefit from the custom Ul Type Editors for the design time
environment.

Ref er ences

1. http://msdn.microsoft.com

