Cryptography in .NET
Venkat Subramaniam
venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abst r act

In this article we explore the capabilities provided by the Cryptography API in .NET. We
will take a look at the facilities provided by the RSACryptoServiceProvider class. We
will also look at some of the other algorithms available as part of the API. Our discussion
will center on encryption of messages and techniques that could be used to encrypt
information/password as well.

The strength of the API

The power of .NET comes from two places: One is the capabilities of Visual Studio .NET
towards enhancing the productivity of the developers. The other is the strength of the API
that is part of the .NET Framework. During my development efforts, | have come to
realize the benefits offered by the framework a number of times. | truly believe that it
allows us to write less code to implement what you may call as infrastructural
functionalities. Writing less code is good, since it allows us to write more code related to
our domain and application.

Why tal k about Cryptography?

Recently | have been asked about this by at least a few clients. One request went some
what like “We are using MSMQ and we want to encrypt the message that is being
transmitted.” My first response was, “MSMQ has facility to encrypt the message.” Upon
further discussion we realized that the message is encrypted during transmission. Once it
is delivered, however, it is wide open for someone to browse from the message queue.
So, the task on hand is to encrypt the message so that only the receiving client application
can view it. Another request went some thing like, we have to keep our own application
based user id and password in the database. However, the information in the database
needs to be encrypted. These are just a few of the requests that lead us into the
System.Security.Cryptography API provided in the .NET Framework.

Code is worth a 1000 words

Let's just delve into the code. First | want to create a pair of keys. | want to send the
public key for others to use for encryption. Once they encrypt, using my public key, they
may send me the information which | can decrypt using my private key. Let’s look at the
code to create the public and private keys:

usi ng System

usi ng System Security. Cryptography;

usi ng System Security. Cryptography. Xm ;

/1 Add Reference to System Security assenbly
using System | Q

usi ng System Text;

nanmespace RSA

/1] <summary>

/1l Sunmary description for Crypto.
[l </ sumrary>

public class Crypto

{
111

111
111

111

111
111

<summary>

Creates a public and private key.

The public key will be in a file naned
keyFi | eNamePub. xm and private key in
keyFi | eNare. xn .

For instance if the fileNane is given as key, then the
files will be keyPub.xm and key.xnl

</ sunmary>

<par am nanme="keyFi | eNane">Only the nanme of the file. An
XML extension will be created for you</parane

public void createKey(String keyFi| eNane)

}

RSAKeyVal ue t heRSAKeyVal ue =
new RSAKeyVal ue();

String str =

t heRSAKeyVal ue. Key. ToXm String(true

/* include private
par anmeters*/);
TextWiter witer = new StreamNiter(
keyFi |l eName + ".xm");

witer.Wite(str);
witer.d ose();

str = t heRSAKeyVal ue. Key. ToXm String(fal se);

witer = new StreanmWiter(keyFileName + "Pub.xm");
witer. Wite(str);

witer.d ose();

The above code is pretty self explanatory. Once a pair of public and private key is
created, it can be used for encryption/decryption. The RSAKeyValue's constructor
creates arandom key. The key property of the RSAKeyV alue object is of type RSA. RSA
is an abstract base class from which implementations of the RSA algorithm inherit. The
RSACryptoServiceProvider, which is used in the example later, is a sealed class that
derives from RSA. It performs asymmetric encryption and decryption and is the default
implementation of RSA.

Encryption and Decryption
The following methods are part of our Crypto class (above):

111
111

111

111
111

<summary>

G ven the keyFileNane (w thout any extension, .xn
ext ensi on assuned),

encrypts or decrypts the inputBytes and puts the result
i n out put Byt es.

</ sunmary>

<par am nanme="keyFi | eNane" >Nanme of Key File (w thout

assunmed xml extension) </ paran

[/l <param nanme="i nput Bytes">Data to be encrypted or
decrypt ed</ par anr

[/ <param name="out put Byt es">The resulting encrypted or
decrypted dat a</ paran

[/l <param name="encrypt">true to encrypt. false to
decrypt </ par anw

public void encryptOrDecrypt(String keyFil eNane
byte[] inputBytes, out byte[] outputBytes,
bool encrypt)

{
String key = ReadFil eToString(keyFileName + ".xm");
RSACr ypt oSer vi cePr ovi der
t heRSACr ypt oSer vi cePr ovi der
= new RSACryptoServi ceProvider();
t heRSACr ypt oSer vi ceProvi der. FromXml Stri ng(key);
out put Bytes = nul |
if (encrypt)
out put Bytes =
t heRSACr ypt oSer vi cePr ovi der . Encrypt (i nput Byt es,
false /* Direct Encryption or OAEP Paddi ng*/);
el se
out put Bytes =
t heRSACr ypt oSer vi cePr ovi der . Decrypt (i nput Byt es,
fal se);
}

/1] <summary>

I/l Reads the contents of the given file into a string
[l </ sumrary>

[/l <param nane="keyFi | eNane">Fil e to read</paranp

/1l <returns></returns>

private String ReadFileToString(String fil eName)

{
String keyString = "";
byte[] buffer = new byte[new
Filelnfo(fileNane).Length];
FileStreamstrm = Fil e. OpenRead(fil eNane) ;
strm Read(buffer, 0, buffer.Length);
strm d ose();
return new ASCl | Encodi ng(). Get String(buffer);
}

The Encrypt method of RSACryptoServiceProvider encrypts the data in
i nput Bytes using the given key. The output of this nmethod is a stream
of encrypted bytes. The Decrypt nmethod sinmlarly decrypts the given set
of inputBytes using the given key.

Test code to encrypt/decrypt
Let’sgivethisatry. Here is a sample code to use the Crypto class we wrote above:

cl ass Test Code

{

private static void displayUsage()

{

}

Consol e. Wit eLi ne(

"Usage: RSAEncryption (-c keyFileName | " +
" -e keyFileNane inputfile outputfile |
-d keyFileNane inputfile outputfile");

private static void processRequest(String[] args)

{

Crypto cryptoHel per = new Crypto();
String request = args[O0];
bool okUsage = true;

swi t ch(request)
{
case "-c":
if (args.Length == 2)
crypt oHel per. createKey(args[1]);
el se
okUsage = fal se;
br eak;

case "-e":
if (args.Length == 4)
{
Filelnfo filelnfo =
new Fil el nfo(args[2]);
byte[] inputBytes =
new byte[fil el nfo. Length];
byte[] outputBytes = null;

FileStreamstrm =
Fil e. OpenRead(args[2]);
strm Read(i nput Byt es, O,
i nput Byt es. Lengt h);
strm d ose();

crypt oHel per. encrypt O Decrypt (
args[1], inputBytes,
out out putBytes, true);
strm= File. QpenWite(args[3]);
strm Wite(outputBytes, O,
out put Byt es. Lengt h) ;
strm d ose();
}
el se
okUsage = fal se;
br eak;

case "-d":

if (args.Length == 4)

{
Filelnfo fil

new Fi

elnfo =
lelnfo(args[2]);

byte[] inputBytes =
new byte[fil el nfo. Length];
byte[] outputBytes = null;

FileStreamstrm =
Fil e. OpenRead(args[2]);
st rm Read(i nput Byt es, O,
i nput Byt es. Lengt h);
strm d ose();

crypt oHel per. encrypt O Decrypt (
args[1], inputBytes,
out out putBytes, false);
strm= File. QpenWite(args[3]);
strm Wite(outputBytes, O,
out put Byt es. Lengt h);
strm d ose();

}

el se
okUsage = fal se;
br eak;

}

if (!okUsage)

{
Consol e. WiteLine("Invalid input");

di spl ayUsage();
}

static void Main(string[] args)

{
if (args.Length < 2)
di spl ayUsage();
el se
processRequest (args);

}

We will create akey file as follows:
RSA . .exe-c key

This creates two files key.xml and keyPub.xml. The content of the keyPub.xml is as
follows:

<RSAKeyVaue><Modulus>0CA6Mh4p2zpXovl ThylvT BBvwOmwbiHVsY yl7omr2wu
9MAddFGCUSOrPdcOOhQADL +Cbu9ZV ZJ552QtA3ENNtY gbY Aam/OKTWvdiY R2rAkf
XNDppDcOWvdK 2gWyc76cdOpnY LNFxU7MnY DpvI9I/EJABCY nxrstsCZcPw7uWabP
E=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>

Now, we will use this public key to encrypt afile. We have a file named secret.txt with
the content “Hello, thisisatest.” We will run the following command:

RSA .exe -e keyPub secret.txt msg.txt
The content of the msg.txt file created is as follows (shown within VS.NET editor):

00000000 f1 45 8C F4 16 54 BL FC 75 57 B4 97 EB 21 D2 F§ E.. .T..uW. . .!_.
00000010 1B 36 Al 12 10 5B 19 CF C6 62 29 21 B8 1B 1F 41 .6...[...b)!.. .4
goQoo020 3% D3 E1 05 BY ED 59 F@ SF EE De SD EZ7 15 00 50 9.....¥._..]...P
gooooo030 39 C9 D9 33 8B 09 7F 91 56 69 CB 80 63 DE A0 1F 9. .3....Vi..c...
Q0000040 2D 24 EE 93 06 36 57 FA 13 A6 48 OF 43 6C 60 14 .=, 6W., H.Cl".
goooo050 87 F8 E? 94 37 BB 92 FD C9 BD 44 77 F3IFERD GE 7......v.."n
Oo000060 A7 BA 43 DF Co CE BE B4 24 1C CC 41 82 46 DA AB . .C.....%_ . 4. ...
gggggg;g 7B 9D EA 29 E6 ED DC 6E 7E 85 OF 2C 1B 12 DE OF {..)...m™..,....

Note that we used the public key in keyPub.xml to encrypt.
Now, in order to decrypt, we will issue the following command:

RSA . .exe -d key msg.txt output.txt

The content of output.txt is:

:\temp\Cryptography\RSANbinNDebug?>more output.txt
ello, this is a test.

:N\temp\Cryptography\RSANbin\Debug’_

Note that an attempt to decrypt using keyPub.xml (the public key) will result inan
exception.

Asymmetric Al gorithm

The RSA? (Rivest, Shamir, and Adleman) cryptography is based on using public and
private keys which are large prime numbers. As against symmetric keys, which use the
same key to encrypt and decrypt, RSA uses asymmetric keys. Asymmetric algorithms,
also known as Public-key algorithms, require the sender and receiver to maintain a pair of
related keys. It is difficult to factor the private key from the public key. Further, message
encrypted using public key can not be decrypted using the public key. One use of
asymmetric keys is in encryption. Another useis in digital signatures used to authenticate
the sender of information. These algorithms and related API play a significant role in
providing confidentiality, integrity and authentication.

Hel p wi th passwords

What if an application wants to manage user ids and passwords. Storing passwords as
readable strings is of course not advisable. One possibility is to use a class available as
part of the cryptography API to manage passwords.

In comparing passwords, it is advisable that you read the user entered password,
transform it and compare it with the pre-transformed password. The following sample
does just that. We show one method, createPassword, which will transform the user
entered password and store it in an xml file. This may be used, for instance, when
creating a new user in our application. We then show another method, checkPassword,
which takes a user entered password, transforms and verifies if it is equal to the (pre-
transformed) password.

MD5 and SHA256
MDS5 is a hash function that takes a binary string of arbitrary length and maps it to a
binary string of fixed length. It is such that no two different inputs would map to the same

hash value.

Hashes of two data match if the data aso match. The

MDS5CryptoServiceProvider is a class that provides default implementation of this in the
Cryptography API. SHA256 is similar where it uses a hash size of 256 bits.
SHA256M anaged is the default implementation of this.

Creating and validating Password
The code to create the password and the code to validate the password is shown below:

class InvalidPassword : Applicati onException

}

publ

ic InvalidPassword() : base("lnvalid Password") {}

public class PasswordHel per

{

111
111

11/
11/
11/
publ

{

111
111

111
111
111

111

<summary>
Transfornms the given password usign SHA256 hash

al gorithm
</ sunmary>
<par am nanme="passwor d">Password to transfornx/ parane
<returns>Hash val ue of the given password</returns>
ic string transfornPassword(string password)

HashAl gorithm al g = new SHA256Managed() ;
byte[] hashCode =
al g. Conmput eHash(new
Syst em Text . Uni codeEncodi ng() . Get Byt es(
password));

return BitConverter. ToString(hashCode);

<summary>

Checks if the password given matches the password hash
val ue

</ sunmary>

<par am nanme="passwor d">Password to mat ch</ parane

<par am nanme="passwor dHashVal ue">hash val ue to natch
wi t h</ par an®»

<exception cref="InvalidPassword">Throws if the match
fail s</exception>

public void checkPassword(string password,

{

string passwordHashVal ue)

HashAl gorithm al g = new SHA256Managed() ;
byte[] hashCode =
al g. Conmput eHash(new
Syst em Text . Uni codeEncodi ng() . Get Byt es(
password));

password = Bit Converter. ToStri ng(hashCode);

if (password != passwordHashVal ue)
t hrow new | nval i dPasswor d() ;

}

Test code for password validation

Assume this is aweb based application. We will maintain user id and password in an xml
document. The page named validate.aspx will allow us to validate the password for a
given user. We assume that the following XML document has already been created using
other means (the password values may be generated using the transformPassword method
above).

<!-- userinfo.xml -->

<useri nfo>

<venkat >06- E4- 4D- C1- B9- 5C- 46- 9F- 43- AA- CC- B4- 9E- 93- C3- 68- 27- 62- 62- 66- EE-
D5- 57- 5E- CE- D7- 4A- F9- AO- 16- C9- CD</ venkat >

<ki n*BE- DD- 71- F7- 10- BC- 29- 9A- FF- E8- 98- AF- C7- 5E- 6F- B2- 80- B5- B9- C4- 99- D6-
6C- FE- DD- 51- 87- 24- 58- DC- 04- 09</ ki m»

<j ohn>Q0- 2F- B2- 5F- CE- 06- 15- A9- 38- E3- 7D- AB- AB- 82- 64- AD- AD- E7- DF- 2E- 2C-
61- 1D AE- 1C- 4C 6E- B8- 53- FD- 1A- 29</ j ohn>

</ useri nf o>

The validate page and the related code is shown below:

Start Page walidate.aspx |

: %Jser]I) : r ; uCheck ;

i3] i
- Password |

& ;

private string getPassword(string userlD)

{

string result = null;

Xm Document doc = new Xm Docunent () ;
doc. Load(Server. MapPath("") + "/userinfo.xm");

Xm El enent el enent = (Xm El enent)
doc. Sel ect Si ngl eNode("userinfo/" + userlD);

if (element !'= null)

{
}

return result;

result = el enent. FirstChild. Val ue;

private void CheckButton_Cick(object sender,
System Event Args e)

{
string userl D = User| DText Box. Text;
string givenPassword = Passwor dText Box. Text;
try
{ |
string storedPassword = get Password(userlD);
if (storedPassword == null)
t hr ow new
Appl i cati onException("UserlD Invalid");
Passwor dUti | . Passwor dHel per hel per =
new PasswordUti| . Passwor dHel per () ;
hel per. checkPasswor d(gi venPasswor d,
st or edPasswor d) ;
}
cat ch(Exception ex)
{
Messagelabel . Text = ex. Message;
return;
}
Messagelabel . Text = "Password is valid";
}

A sample execution of the program is shown below:

UserID fvenkat Check

UserID |venkat Check

Password |eewee

Password |n

In the above screen snapshot, the password “hello” is valid while the password “ho” is
not. The file userinfo.xml shown previously has the hash value for “hello” as content of
the <venkat> element. Note that the application did not transform the hash value to text
“hello.” Instead, the hash value of the user entered password is computed and then
compared with the hash value stored in the xml document.

Concl usi on
In this article we presented the capabilities of some of the classes in the

System.Security.Cryptography namespace in .NET. The facilities for RSA algorithm in

NET makes it easier to implement applications that require encryption or authentication.
We also explored the hash algorithm that helps us store information like password.

Ref er ences
1. http://msdn.microsoft.com.

2. Rivest, et. a., A method for obtaining digital signatures and public-key
cryptosystems, Communications of the ACM (2) 21 (1978), 120-126.

