
Cryptography in .NET
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
In this article we explore the capabilities provided by the Cryptography API in .NET. We
will take a look at the facilities provided by the RSACryptoServiceProvider class. We
will also look at some of the other algorithms available as part of the API. Our discussion
will center on encryption of messages and techniques that could be used to encrypt
information/password as well.

The strength of the API
The power of .NET comes from two places: One is the capabilities of Visual Studio .NET
towards enhancing the productivity of the developers. The other is the strength of the API
that is part of the .NET Framework. During my development efforts, I have come to
realize the benefits offered by the framework a number of times. I truly believe that it
allows us to write less code to implement what you may call as infrastructural
functionalities. Writing less code is good, since it allows us to write more code related to
our domain and application.

Why talk about Cryptography?
Recently I have been asked about this by at least a few clients. One request went some
what like “We are using MSMQ and we want to encrypt the message that is being
transmitted.” My first response was, “MSMQ has facility to encrypt the message.” Upon
further discussion we realized that the message is encrypted during transmission. Once it
is delivered, however, it is wide open for someone to browse from the message queue.
So, the task on hand is to encrypt the message so that only the receiving client application
can view it. Another request went some thing like, we have to keep our own application
based user id and password in the database. However, the information in the database
needs to be encrypted. These are just a few of the requests that lead us into the
System.Security.Cryptography1 API provided in the .NET Framework.

Code is worth a 1000 words
Let’s just delve into the code. First I want to create a pair of keys. I want to send the
public key for others to use for encryption. Once they encrypt, using my public key, they
may send me the information which I can decrypt using my private key. Let’s look at the
code to create the public and private keys:

using System;
using System.Security.Cryptography;
using System.Security.Cryptography.Xml;
// Add Reference to System.Security assembly
using System.IO;
using System.Text;

namespace RSA

{
 /// <summary>
 /// Summary description for Crypto.
 /// </summary>
 public class Crypto
 {
 /// <summary>
 /// Creates a public and private key.
 /// The public key will be in a file named

keyFileNamePub.xml and private key in
keyFileName.xml.

 /// For instance if the fileName is given as key, then the
files will be keyPub.xml and key.xml

 /// </summary>
 /// <param name="keyFileName">Only the name of the file. An

XML extension will be created for you</param>
 public void createKey(String keyFileName)
 {
 RSAKeyValue theRSAKeyValue =

new RSAKeyValue();
 String str =

 theRSAKeyValue.Key.ToXmlString(true
/* include private

parameters*/);
 TextWriter writer = new StreamWriter(

keyFileName + ".xml");
 writer.Write(str);
 writer.Close();

 str = theRSAKeyValue.Key.ToXmlString(false);
 writer = new StreamWriter(keyFileName + "Pub.xml");
 writer.Write(str);
 writer.Close();
 }

The above code is pretty self explanatory. Once a pair of public and private key is
created, it can be used for encryption/decryption. The RSAKeyValue’s constructor
creates a random key. The key property of the RSAKeyValue object is of type RSA. RSA
is an abstract base class from which implementations of the RSA algorithm inherit. The
RSACryptoServiceProvider, which is used in the example later, is a sealed class that
derives from RSA. It performs asymmetric encryption and decryption and is the default
implementation of RSA.

Encryption and Decryption
The following methods are part of our Crypto class (above):

 /// <summary>
 /// Given the keyFileName (without any extension, .xml

extension assumed),
 /// encrypts or decrypts the inputBytes and puts the result

in outputBytes.
 /// </summary>
 /// <param name="keyFileName">Name of Key File (without

assumed xml extension)</param>
 /// <param name="inputBytes">Data to be encrypted or

decrypted</param>
 /// <param name="outputBytes">The resulting encrypted or

decrypted data</param>
 /// <param name="encrypt">true to encrypt. false to

decrypt</param>
 public void encryptOrDecrypt(String keyFileName,

byte[] inputBytes, out byte[] outputBytes,
bool encrypt)

 {
 String key = ReadFileToString(keyFileName + ".xml");
 RSACryptoServiceProvider

theRSACryptoServiceProvider
 = new RSACryptoServiceProvider();

 theRSACryptoServiceProvider.FromXmlString(key);

 outputBytes = null;

 if (encrypt)
 outputBytes =

theRSACryptoServiceProvider.Encrypt(inputBytes,
 false /* Direct Encryption or OAEP Padding*/);

 else
 outputBytes =

theRSACryptoServiceProvider.Decrypt(inputBytes,
 false);

 }

 /// <summary>
 /// Reads the contents of the given file into a string
 /// </summary>
 /// <param name="keyFileName">File to read</param>
 /// <returns></returns>
 private String ReadFileToString(String fileName)
 {
 String keyString = "";

 byte[] buffer = new byte[new

FileInfo(fileName).Length];
 FileStream strm = File.OpenRead(fileName);
 strm.Read(buffer, 0, buffer.Length);
 strm.Close();
 return new ASCIIEncoding().GetString(buffer);
 }

The Encrypt method of RSACryptoServiceProvider encrypts the data in
inputBytes using the given key. The output of this method is a stream
of encrypted bytes. The Decrypt method similarly decrypts the given set
of inputBytes using the given key.

Test code to encrypt/decrypt
Let’s give this a try. Here is a sample code to use the Crypto class we wrote above:

 class TestCode
 {

 private static void displayUsage()
 {
 Console.WriteLine(

"Usage: RSAEncryption (-c keyFileName | " +
 " -e keyFileName inputfile outputfile |

-d keyFileName inputfile outputfile");
 }

 private static void processRequest(String[] args)
 {
 Crypto cryptoHelper = new Crypto();

 String request = args[0];

 bool okUsage = true;

 switch(request)
 {
 case "-c":
 if (args.Length == 2)
 cryptoHelper.createKey(args[1]);
 else
 okUsage = false;
 break;

 case "-e":
 if (args.Length == 4)
 {
 FileInfo fileInfo =

new FileInfo(args[2]);
 byte[] inputBytes =

new byte[fileInfo.Length];
 byte[] outputBytes = null;

 FileStream strm =

File.OpenRead(args[2]);
 strm.Read(inputBytes, 0,

 inputBytes.Length);
 strm.Close();

 cryptoHelper.encryptOrDecrypt(

args[1], inputBytes,
out outputBytes, true);

 strm = File.OpenWrite(args[3]);
 strm.Write(outputBytes, 0,

 outputBytes.Length);
 strm.Close();
 }
 else
 okUsage = false;
 break;

 case "-d":
 if (args.Length == 4)
 {
 FileInfo fileInfo =

new FileInfo(args[2]);

 byte[] inputBytes =
new byte[fileInfo.Length];

 byte[] outputBytes = null;

 FileStream strm =

File.OpenRead(args[2]);
 strm.Read(inputBytes, 0,

 inputBytes.Length);
 strm.Close();

 cryptoHelper.encryptOrDecrypt(

args[1], inputBytes,
out outputBytes, false);

 strm = File.OpenWrite(args[3]);
 strm.Write(outputBytes, 0,

outputBytes.Length);
 strm.Close();
 }
 else
 okUsage = false;
 break;
 }

 if (!okUsage)
 {
 Console.WriteLine("Invalid input");
 displayUsage();
 }
 }

 static void Main(string[] args)
 {
 if (args.Length < 2)
 displayUsage();
 else
 processRequest(args);
 }
 }

We will create a key file as follows:

RSA.exe -c key

This creates two files key.xml and keyPub.xml. The content of the keyPub.xml is as
follows:
<RSAKeyValue><Modulus>oCA6Mh4p2zpXovIThy1vTBBvw0mwbiHVsYyl7omr2wu
9mddFGCUS0rPdcOOhQAbL+Cbu9ZVZJ552QtA3EnNtYqbYAam/OKTWvdiYR2rAkf
xNDppDc0WvdK2gWyc76cd0pnYLNFxU7MnYDpvl9l/EJABCYnxrstsCZcPw7uWa6P
E=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>

Now, we will use this public key to encrypt a file. We have a file named secret.txt with
the content “Hello, this is a test.” We will run the following command:

RSA.exe -e keyPub secret.txt msg.txt
The content of the msg.txt file created is as follows (shown within VS.NET editor):

Note that we used the public key in keyPub.xml to encrypt.

Now, in order to decrypt, we will issue the following command:

RSA.exe -d key msg.txt output.txt

The content of output.txt is:

Note that an attempt to decrypt using keyPub.xml (the public key) will result in an
exception.

Asymmetric Algorithm
The RSA2 (Rivest, Shamir, and Adleman) cryptography is based on using public and
private keys which are large prime numbers. As against symmetric keys, which use the
same key to encrypt and decrypt, RSA uses asymmetric keys. Asymmetric algorithms,
also known as Public-key algorithms, require the sender and receiver to maintain a pair of
related keys. It is difficult to factor the private key from the public key. Further, message
encrypted using public key can not be decrypted using the public key. One use of
asymmetric keys is in encryption. Another use is in digital signatures used to authenticate
the sender of information. These algorithms and related API play a significant role in
providing confidentiality, integrity and authentication.

Help with passwords
What if an application wants to manage user ids and passwords. Storing passwords as
readable strings is of course not advisable. One possibility is to use a class available as
part of the cryptography API to manage passwords.

In comparing passwords, it is advisable that you read the user entered password,
transform it and compare it with the pre-transformed password. The following sample
does just that. We show one method, createPassword, which will transform the user
entered password and store it in an xml file. This may be used, for instance, when
creating a new user in our application. We then show another method, checkPassword,
which takes a user entered password, transforms and verifies if it is equal to the (pre-
transformed) password.

MD5 and SHA256
MD5 is a hash function that takes a binary string of arbitrary length and maps it to a
binary string of fixed length. It is such that no two different inputs would map to the same
hash value. Hashes of two data match if the data also match. The
MD5CryptoServiceProvider is a class that provides default implementation of this in the
Cryptography API. SHA256 is similar where it uses a hash size of 256 bits.
SHA256Managed is the default implementation of this.

Creating and validating Password
The code to create the password and the code to validate the password is shown below:

 class InvalidPassword : ApplicationException
 {
 public InvalidPassword() : base("Invalid Password") {}
 }

 public class PasswordHelper
 {
 /// <summary>
 /// Transforms the given password usign SHA256 hash

algorithm
 /// </summary>
 /// <param name="password">Password to transform</param>
 /// <returns>Hash value of the given password</returns>
 public string transformPassword(string password)
 {
 HashAlgorithm alg = new SHA256Managed();
 byte[] hashCode =
 alg.ComputeHash(new

System.Text.UnicodeEncoding().GetBytes(
password));

 return BitConverter.ToString(hashCode);
 }

 /// <summary>
 /// Checks if the password given matches the password hash

value
 /// </summary>
 /// <param name="password">Password to match</param>
 /// <param name="passwordHashValue">hash value to match

with</param>
 /// <exception cref="InvalidPassword">Throws if the match

fails</exception>
 public void checkPassword(string password,

string passwordHashValue)
 {
 HashAlgorithm alg = new SHA256Managed();
 byte[] hashCode =
 alg.ComputeHash(new

System.Text.UnicodeEncoding().GetBytes(
password));

 password = BitConverter.ToString(hashCode);

 if (password != passwordHashValue)
 throw new InvalidPassword();
 }
 }

Test code for password validation
Assume this is a web based application. We will maintain user id and password in an xml
document. The page named validate.aspx will allow us to validate the password for a
given user. We assume that the following XML document has already been created using
other means (the password values may be generated using the transformPassword method
above).

<!-- userinfo.xml -->
<userinfo>
<venkat>06-E4-4D-C1-B9-5C-46-9F-43-AA-CC-B4-9E-93-C3-68-27-62-62-66-EE-
D5-57-5E-CE-D7-4A-F9-A0-16-C9-CD</venkat>
<kim>BE-DD-71-F7-10-BC-29-9A-FF-E8-98-AF-C7-5E-6F-B2-80-B5-B9-C4-99-D6-
6C-FE-DD-51-87-24-58-DC-04-09</kim>
<john>C0-2F-B2-5F-CE-06-15-A9-38-E3-7D-AB-AB-82-64-AD-AD-E7-DF-2E-2C-
61-1D-AE-1C-4C-6E-B8-53-FD-1A-29</john>
</userinfo>

The validate page and the related code is shown below:

 private string getPassword(string userID)
 {
 string result = null;

 XmlDocument doc = new XmlDocument();
 doc.Load(Server.MapPath("") + "/userinfo.xml");

 XmlElement element = (XmlElement)

doc.SelectSingleNode("userinfo/" + userID);

 if (element != null)
 {
 result = element.FirstChild.Value;
 }

 return result;
 }

 private void CheckButton_Click(object sender,

 System.EventArgs e)
 {
 string userID = UserIDTextBox.Text;
 string givenPassword = PasswordTextBox.Text;

 try
 {
 string storedPassword = getPassword(userID);

 if (storedPassword == null)

throw new
 ApplicationException("UserID Invalid");

 PasswordUtil.PasswordHelper helper =

new PasswordUtil.PasswordHelper();

 helper.checkPassword(givenPassword,
storedPassword);

 }
 catch(Exception ex)
 {
 MessageLabel.Text = ex.Message;
 return;
 }

 MessageLabel.Text = "Password is valid";
 }

A sample execution of the program is shown below:

In the above screen snapshot, the password “hello” is valid while the password “ho” is
not. The file userinfo.xml shown previously has the hash value for “hello” as content of
the <venkat> element. Note that the application did not transform the hash value to text
“hello.” Instead, the hash value of the user entered password is computed and then
compared with the hash value stored in the xml document.

Conclusion
In this article we presented the capabilities of some of the classes in the
System.Security.Cryptography namespace in .NET. The facilities for RSA algorithm in

.NET makes it easier to implement applications that require encryption or authentication.
We also explored the hash algorithm that helps us store information like password.

References

1. http://msdn.microsoft.com.
2. Rivest, et. al., A method for obtaining digital signatures and public-key

cryptosystems, Communications of the ACM (2) 21 (1978), 120-126.

