
Dealing with Conflicting Interfaces: Part II - .NET
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
In Part I we discussed the issue of conflicting or colliding interfaces and saw how we can
address that in Java. While the Java solution is workable, it is not elegant. We can’ t
directly substitute an object of the “ implementing” class for the desired interface. .NET
offers an interesting facility called “Explicit interface.” This allows for a class to override
multiple methods with the same signature in a class. Explicit interfaces provide an easy
mechanism to implement conflicting interfaces.

Conflicting Interfaces
I assume you have read the article “Dealing with Conflicting Interfaces: Part I – Java.”
We have two interfaces Pi ani st and At hl et e. Both the interfaces have a play method.
We are interested in implementing these two interfaces in the class Per son.

The problem in .NET as in Java is that you can’ t have more than one implementation of
the same method with the same signature in a class. However, .NET provides a simple
workaround to address this problem.

Explicit Interface
A class may implement some or all of the methods of an interface as an explicit
implementation. If a method is implemented explicitly, then the method is not accessible
directly using a reference of the type. Instead you will have to use the reference of the
interface type to access it. The explicit method implementation is not declared public and
it is implemented using the fully qualified name of the method, that is, interface name
followed by a dot and then the method name.

Pleasure and perils of Explicit Interface
A class is allowed to override more than one method with the same name and signature,
as long as no more than one of these methods is implemented implicitly. This alleviates
the problem of conflicting or colliding interfaces as we will see later.

You don’ t have to make all the methods of an interface explicit in your class. This allows
for you to implement and expose some methods of the interface as implicit methods
while eliminating some methods from the class’s public interface. The explicit method
then can only be accessed using the interface reference as shown below. Say we have an
interface I 1 and a class SomeCl ass that implements it.

publ i c i nt er f ace I 1
{

voi d Foo1() ;
voi d Foo2() ;

}

publ i c c l ass SomeCl ass : I 1

{
 publ i c voi d Foo1() { …}
 voi d I 1. Foo2() { …}

}

Now, we can access Foo1() using SomeCl ass reference as in

SomeCl ass r ef 1 = new SomeCl ass() ;
r ef 1. Foo1() ;

We may also access Foo1() using the interface I 1 reference as in:

I 1 r ef I 1 = r ef 1;
r ef I 1. Foo1() ;

However, the method Foo2() is not accessible using the reference of type SomeCl ass . It
is accessible only through reference of type I 1.

r ef 1. Foo2() ; / / ERROR
r ef I 1. Foo2() ; / / OK

You may be tempted to use explicit interface to partially implement an interface. In the
explicit method you may throw an exception that the method is not implemented. You
may argue that a user of the class will not be able to directly call the methods you have
withdrawn. If they cast the object as the interface and then call the method, then they will
get a runtime exception. For instance, you can see an example of this behavior in the
Syst em. Ar r ay class. This class implements the I Li st interface, but makes most of the
methods explicit. If you try to treat an array as I Li st , and call the Add() method, you
will get a runtime exception. Use caution in using explicit interfaces for implementing an
interface partially. You may end up violating the Liskov’s Substitution Principle which
states that “an instance of derived must be substitutable wherever an instance of base is
used, without the need for the user to know the difference.” Your code may not be
extensible.

Using Explicit Interface to address colliding interfaces
Let’s first see the two interfaces in C#.

 publ i c i nt er f ace Pi ani st
 {
 s t r i ng get Name() ;
 voi d pl ay() ;
 }

 publ i c i nt er f ace At hl et e
 {
 s t r i ng get Name() ;
 voi d pl ay() ;
 }

Now, let’s implement the Pi ani st interface in the class Per son:

 publ i c c l ass Per son : Pi ani st
 {
 publ i c St r i ng get Name()
 {
 r et ur n " Joe" ;
 }

 publ i c voi d pl ay()
 {
 Consol e. Wr i t eLi ne(" Joe pl ayi ng Pi ano") ;
 }
 }

And, finally, here is our implementation of the At hl et e interface:

 publ i c c l ass Per son : Pi ani st , Athlete
 {
 publ i c St r i ng get Name()
 {
 r et ur n " Joe" ;
 }

 publ i c voi d pl ay()
 {
 Consol e. Wr i t eLi ne(" Joe pl ayi ng Pi ano") ;
 }

 public void playAthlete()
 {
 Console.WriteLine("Joe sprints");
 }

 void Athlete.play()
 {
 playAthlete();
 }
 }

The test case that exercises this code is shown below:

 c l ass MyTest Case
 {
 publ i c st at i c voi d usePi ani st (Pi ani st p)
 {
 Consol e. Wr i t eLi ne(" Usi ng Pi ani st ") ;
 Consol e. Wr i t eLi ne(" Name: " + p. get Name()) ;
 p. pl ay() ;
 }

 publ i c st at i c voi d useAt hl et e(At hl et e a)
 {
 Consol e. Wr i t eLi ne(" Usi ng At hl et e") ;
 Consol e. Wr i t eLi ne(" Name: " + a. get Name()) ;

 a. pl ay() ;
 }

 [STAThr ead]
 s t at i c voi d Mai n(st r i ng[] ar gs)
 {
 Per son p = new Per son() ;

 usePi ani st (p) ;
 useAt hl et e(p) ;

 Consol e. Wr i t eLi ne(" I n Mai n") ;
 Consol e. Wr i t eLi ne(p. get Name()) ;
 p. pl ay() ;
 }
 }

And the output from the above code is:

Usi ng Pi ani st
Name: Joe
Joe pl ayi ng Pi ano
Usi ng At hl et e
Name: Joe
Joe spr i nt s
I n Mai n
Joe
Joe pl ayi ng Pi ano

In Per son class, I have chosen to implement the pl ay() method as implicit interface for
the Pi ani st pl ay() method. You may implement that as an explicit method, if you
desire. The user of Per son class may use the pl ayAt hel et e() method directly on a
reference of type Per son, but can call the pl ay() method of At hl et e directly only using
a reference of type At hl et e.

Conclusion
In Part I we say how to deal with conflicting interfaces in Java. In this part II we have
seen how we can handle that in .NET. Explicit interfaces in .NET allow us to effectively
implement methods when their names and signature collide. Use caution in using explicit
interfaces, however, when it comes to partially implementing interface methods. This
may lead to extensibility problems.

References

1. http://msdn.microsoft.com

