
Agile Developer, Inc. 1 of 9 http://www.agiledeveloper.com

Background Worker in .NET 2.0
Venkat Subramaniam

venkats@agiledeveloper.com
http://www.agiledeveloper.com/download.aspx

Abstract
Delegating a task to a separate thread is easy. However, updating user controls with result
of those tasks was not, until .NET 2.0. BackgroundWorker in .NET 2.0 makes life easier.
It allows you to delegate tasks to be executed in a separate thread, and provides a thread-
safe way to update the user controls as well. In this article, we will explore the
capabilities of BackgroundWorker component.

Multithreading Woes
Let’s start with an example. Assume we have a windows application which, upon the
press of a button, should perform an operation that may take some time. We certainly
don’t want to perform that task in the main (event handling) thread. This would make the
application non-responsive. So, we decide to put that code in a separate thread. Here is
the first attempt to do just that.

I have created a simple WinForm application with a Form as shown below:

I’ve added an event handler for the button (by double clicking on button1) as shown
below:
 private void button1_Click(object sender, EventArgs e)
 {
 button1.Enabled = false;
 new Thread(Work).Start();
 }

The method Work() is shown below:

 private void Work()
 {
 // Simulates a time consuming task
 int index = 10;
 int total = 0;
 for (int i = 0; i < index; i++)
 {
 total += i;
 Thread.Sleep(1000); //Simulates delay
 }

 label1.Text = total.ToString(); // Wrong, don’t do this.

Agility

Agile Developer, Inc. 2 of 9 http://www.agiledeveloper.com

 button1.Enabled = true; // Wrong, don't do this here.
 }

If you execute the program, it may appear to run fine. However, there is a problem with
this code. We will discuss this further in the next section.

Thread-safety

The Work() method, in the above example, executes in a separate thread from the main
event handling thread. However, from this method we are updating the Text property of
the label control and the Enabled property of the button as well. This is a no-no. Why?
Because, only the methods Invoke(), BeginInvoke(), EndInvoke(),
CreateGraphics(), and property InvokeRequired are thread-safe. Other methods and
properties of control aren’t thread-safe. What does that mean? If a method is thread-safe,
it indicates that you are allowed to call that method from any thread. This means that
either the method doesn’t have a problem with contention (contention raises the
possibility that multiple threads will collide over or overwrite some critical data) or it
synchronizes the calls to avoid the contention.

It is good that most methods and properties of control aren’t thread-safe. Why’s that?
Synchronization has a price. If your code has locks, then, even if you only have one
thread running in your application, the thread has to take time to acquire the lock and
then relinquish the lock. This can be an unnecessary overhead and can be avoided by
agreeing to access the controls from only the event handling thread.

Pre .NET 2.0 Solution
The solution in pre .NET 2.0 is to jump threads1. But, before we try to do that, it will help
to refactor the code so it is easier to work with separate concerns. If you take a closer
look at the Work() method, you notice that it does two things. One, the computation itself
(the time consuming task that we are emulating), and second, displaying the result. Let’s
refactor2 this method using the extract method refactoring capability of VS 20053 as
shown below:

Agility

Agile Developer, Inc. 3 of 9 http://www.agiledeveloper.com

After the above refactoring, the code looks like the following:

 private void Work()
 {
 int total = Compute();

 label1.Text = total.ToString(); // Wrong, don't do this.
 button1.Enabled = true; // Wrong, don't do this here.
 }

 private /* static */ int Compute()
 // Removed static placed by tool. We need this to be
 // instance methods for later use.
 {
 // Simulates a time consuming task
 int index = 10;
 int total = 0;
 for (int i = 0; i < index; i++)
 {
 total += i;
 Thread.Sleep(1000); //Simulates delay
 }
 return total;
 }

We can now refactor the code that accesses the controls in the Work() method as well.
The resulting refactored code should look like the following:

 private void Work()
 {
 int total = Compute();

 Display(total);
 }

 private void Display(int total)
 {
 label1.Text = total.ToString(); // Wrong, don't do this.
 button1.Enabled = true; // Wrong, don't do this here.
 }

Agility

Agile Developer, Inc. 4 of 9 http://www.agiledeveloper.com

We make small modification to the code so the Display()method accepts a string
instead of an int as shown below:

 private void Work()
 {
 int total = Compute();

 Display(total.ToString());
 }

 private void Display(string text)
 {
 label1.Text = text;
 button1.Enabled = true;
 }

Now, while the Compute() method can be executed in the worker thread, the Display()
should not. The code to switch threads is shown below:

 private delegate void DisplayDelegate(string text);
 private void Display(string text)
 {
 if (InvokeRequired)
 {
 Invoke(new DisplayDelegate(Display),
 new object[] { text });
 }
 else
 {
 label1.Text = text;
 button1.Enabled = true;
 }
 }

This implementation has some nice features1. We don’t have to worry about which thread
is invoking the Display method. Within the method, we quietly switch to the appropriate
thread. The code is succinct as well.

Let’s take a look at the relevant code in entirety.

 private void button1_Click(object sender, EventArgs e)
 {
 button1.Enabled = false;
 new Thread(Work).Start();
 }

 private void Work()
 {
 int total = Compute();

 Display(total.ToString());

Agility

Agile Developer, Inc. 5 of 9 http://www.agiledeveloper.com

 }

 private delegate void DisplayDelegate(string text);
 private void Display(string text)
 {
 if (InvokeRequired)
 {
 Invoke(new DisplayDelegate(Display),
 new object[] { text });
 }
 else
 {
 label1.Text = text;
 button1.Enabled = true;
 }
 }

 private int Compute()
 {
 // Simulates a time consuming task
 int index = 10;
 int total = 0;
 for (int i = 0; i < index; i++)
 {
 total += i;
 Thread.Sleep(1000); //Simulates delay
 }
 return total;
 }

Once we understand what’s going on, it is not too bad. However, can it be better? Can it
be simpler? Let’s ask for just one more features before answering that question. What if,
when in the middle of the Compute() method, we want to report progress as to where we
are? How do we do that? We have to write code again to switch threads and this can
become tedious and unwieldy. Let’s leave it at that and see how .NET 2.0 makes life
easier.

BackgroundWorker in .NET 2.0
BackgroundWorker4 is a component that allows you to delegate a long running task to a
different thread. It doesn’t stop with that. You can place the component on a windows
form (it is a non-UI control, so it goes into the component tray). You can register event
handlers with it. It takes care of running the long running task in separate thread while
running the task to update control (to report result or progress) in the main event handling
thread. These features make it very easy to deal with the problem like the example above
has shown.

Delegating the task and reporting completion
Let’s continue with our example. Let’s drag and drop a BackgroundWorker class onto the
Form as shown below:

Agility

Agile Developer, Inc. 6 of 9 http://www.agiledeveloper.com

The component we dragged and dropped appears in the component tray in the bottom
(I’ve made the IDE window really small so we can see all relevant information here).

Right click on backgroundWorker1 and select properties. In the properties window, go to
the Events tab and double click on the DoWork event to add a handler. Similarly, double
click on RunWorkerCompleted to add an event handler for that as well. We have added
code to the generated handlers as shown below:

 private void backgroundWorker1_DoWork(object sender,

DoWorkEventArgs e)
 {

 MessageBox.Show("DoWork is in control owning thread? "
+ !InvokeRequired);

 }

 private void backgroundWorker1_RunWorkerCompleted(

object sender, RunWorkerCompletedEventArgs e)
 {
 MessageBox.Show(

"RunWorkerCompleted is in control owning thread? "
+ !InvokeRequired);

 }

I’ve also added a line to the button event handler to delegate the task to the
BackgroundWorker component, as shown below:

 private void button1_Click(object sender, EventArgs e)
 {
 button1.Enabled = false;
 //new Thread(Work).Start();
 backgroundWorker1.RunWorkerAsync();
 }

I’ve commented out the code that created a new thread as we don’t need that any more.

When we run the application and click on button1, we see the following displayed:

Agility

Agile Developer, Inc. 7 of 9 http://www.agiledeveloper.com

We see that the DoWork method is executed in a different thread and the RunWorker is
executed in the main (control owning event handling) thread.

Enough studying, let’s put the two methods to use in our example.

 private void backgroundWorker1_DoWork(

object sender, DoWorkEventArgs e)
 {
 e.Result = Compute();
 }

 private void backgroundWorker1_RunWorkerCompleted(

object sender, RunWorkerCompletedEventArgs e)
 {
 Display(e.Result.ToString());
 }

Our earlier effort to refactor the code came in handy. We are simply calling the
Compute() method from within the DoWork event handler. We then stuff the result into
the DoWorkEventArgs object. When the DoWork event completes, the
RunWorkerCompleted event is executed in the main thread. In this method we pick up
the result of the delegated task and display it. Go ahead and try the example. We still
have one more small talks to do. We have to get rid of some code we don’t need. After
some cleaning up, our code looks like this:

 private void button1_Click(object sender, EventArgs e)
 {
 button1.Enabled = false;
 backgroundWorker1.RunWorkerAsync();
 }

 private void Display(string text)
 {
 label1.Text = text;
 button1.Enabled = true;
 }

 private int Compute()
 {
 // Simulates a time consuming task
 int index = 10;
 int total = 0;
 for (int i = 0; i < index; i++)
 {

Agility

Agile Developer, Inc. 8 of 9 http://www.agiledeveloper.com

 total += i;
 Thread.Sleep(1000); //Simulates delay
 }
 return total;
 }

 private void backgroundWorker1_DoWork(

object sender, DoWorkEventArgs e)
 {
 e.Result = Compute();
 }

 private void backgroundWorker1_RunWorkerCompleted(

object sender, RunWorkerCompletedEventArgs e)
 {
 Display(e.Result.ToString());
 }

Reporting progress
Let’s do one more thing before we call this done. How about reporting progress while
we’re in the middle of the Compute() method?

Let’s add a progress bar to the form first as shown here:

Now, let’s add the event handler for the backgroundworker1’s ProgressChanged event.
Here is the code to update the progress bar:

 private void backgroundWorker1_ProgressChanged(

object sender, ProgressChangedEventArgs e)
 {
 progressBar1.Value = e.ProgressPercentage;
 }

But, we’ve not asked the application to invoke this event handler, yet. So, here it is in the
Compute() method.

 private int Compute()
 {
 // Simulates a time consuming task
 int index = 10;
 int total = 0;
 for (int i = 0; i < index; i++)
 {
 total += i;
 backgroundWorker1.ReportProgress(i * 10 + 10);

Agility

Agile Developer, Inc. 9 of 9 http://www.agiledeveloper.com

 Thread.Sleep(1000); //Simulates delay
 }
 return total;
 }

Before we go for a test drive, there is one last thing we need to turn on–we need to ask
the backgroundworker1 to report progress by setting the WorkerReportsProgress
property to true.

Alright, now take it for a test drive and see what happens.

One disadvantage you may see here is that the Compute() method which was fairly
cohesive by its focus on (nose into) the computation is now interested in reporting
progress as well. As a purist we may break that part away from Compute() method into a
separate method that deals with updating progress.

Conclusion
When delegating tasks in a windows application we need to be careful about accessing
the control due to thread-safety issues. BackgroundWorker component provided in .NET
2.0 comes to rescue to address these concerns. It provides an easier way to delegate task,
report progress, and update controls with result, while making sure the activities are
carried out in the appropriate threads.

References

1. Venkat Subramaniam, ".NET Gotchas," O’Reilly.
2. Martin Fowler, et. al., “Refactoring: Improving the Design of Existing Code,”

Addison-Wesley.
3. Visual Studio 2005 – http://msdn.microsoft.com/vs2005.
4. MSDN Documentation – http://msdn.microsoft.com.

